60K35 | Interacting random processes; statistical mechanics type models; percolation theory |
60G50 | Sums of independent random variables; random walks |
[1] | Belius D.: Gumbel fluctuations for cover times in the discrete torus. Probab. Theory Relat. Fields 157(3-4), 635-689 (2013) ·Zbl 1295.60053 ·doi:10.1007/s00440-012-0467-7 |
[2] | Belius, D., Kistler, N.: The Subleading Order of Two Dimensional Cover Times (2014). arXiv:1405.0888 ·Zbl 1365.60071 |
[3] | Brummelhuis M., Hilhorst H.: Covering of a finite lattice by a random walk. Phys. A 176(3), 387-408 (1991) ·doi:10.1016/0378-4371(91)90220-7 |
[4] | Černý, J., Teixeira, A.: From random walk trajectories to random interlacements. Ensaios Matemáticos [Mathematical Surveys], vol. 23. Sociedade Brasileira de Matemática, Rio de Janeiro (2012) ·Zbl 1269.60002 |
[5] | Černý, J., Teixeira, A.: Random walks on torus and random interlacements: Macroscopic coupling and phase transition (2015). arXiv:1411.7795 ·Zbl 1353.60083 |
[6] | Comets, F., Gallesco, C., Popov, S., Vachkovskaia, M.: On large deviations for the cover time of two-dimensional torus. Electron. J. Probab. 18 (2013) (article 96) ·Zbl 1294.60066 |
[7] | Dembo A., Peres Y., Rosen J., Zeitouni O.: Cover times for Brownian motion and random walks in two dimensions. Ann. Math. (2) 160(2), 433-464 (2004) ·Zbl 1068.60018 ·doi:10.4007/annals.2004.160.433 |
[8] | Dembo A., Peres Y., Rosen J., Zeitouni O.: Late points for random walks in two dimensions. Ann. Probab. 34(1), 219-263 (2006) ·Zbl 1100.60057 ·doi:10.1214/009117905000000387 |
[9] | Ding J.: On cover times for 2D lattices. Electron. J. Probab. 17(45), 1-18 (2012) ·Zbl 1258.60044 |
[10] | Drewitz A., Ráth B., Sapozhnikov A.: An Introduction to Random Interlacements. Springer, New York (2014) ·Zbl 1304.60008 ·doi:10.1007/978-3-319-05852-8 |
[11] | Fayolle G., Malyshev V.A., Menshikov M.V.: Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge (1995) ·Zbl 0823.60053 ·doi:10.1017/CBO9780511984020 |
[12] | Goodman J., den Hollander F.: Extremal geometry of a Brownian porous medium. Probab. Theory Relat. Fields. 160(1-2), 127-174 (2014) ·Zbl 1327.60037 ·doi:10.1007/s00440-013-0525-9 |
[13] | Lawler G., Limic V.: Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010) ·Zbl 1210.60002 |
[14] | Levin D., Peres Y., Wilmer E.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009) ·Zbl 1160.60001 |
[15] | Miller, J., Sousi, P.: Uniformity of the Late Points of Random Walk on \[{\mathbb{Z}_n^d}\] Znd for \[{d\geq 3}\] d≥3 (2013). arXiv:1309.3265 ·Zbl 1372.60066 |
[16] | Popov S., Teixeira A.: Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. 17(10), 2545-2593 (2015) ·Zbl 1329.60342 ·doi:10.4171/JEMS/565 |
[17] | Revuz D.: Markov Chains, 2nd edn. North-Holland Publishing Co., Amsterdam (1984) ·Zbl 0539.60073 |
[18] | Sznitman, A.-S.: On the domination of random walk on a discrete cylinder by random interlacements. Electron. J. Probab. 14(56), 1670-1704 (2009) ·Zbl 1196.60170 |
[19] | Sznitman A.-S.: Random walks on discrete cylinders and random interlacements. Probab. Theory Relat. Fields 145(1-2), 143-174 (2009) ·Zbl 1172.60316 ·doi:10.1007/s00440-008-0164-8 |
[20] | Sznitman A.-S.: Vacant set of random interlacements and percolation. Ann. Math. (2) 171(3), 2039-2087 (2010) ·Zbl 1202.60160 ·doi:10.4007/annals.2010.171.2039 |
[21] | Teixeira A.: Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14, 1604-1627 (2009) ·Zbl 1192.60108 ·doi:10.1214/EJP.v14-670 |
[22] | Teixeira A., Windisch D.: On the fragmentation of a torus by random walk. Commun. Pure Appl. Math. 64(12), 1599-1646 (2011) ·Zbl 1235.60143 ·doi:10.1002/cpa.20382 |
[23] | Windisch D.: Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13, 140-150 (2008) ·Zbl 1187.60089 ·doi:10.1214/ECP.v13-1359 |