[1] | V. Beresnevich, Rational points near manifolds and metric Diophantine approximation, Annals of Mathematics 175 (2012), 187-235. ·Zbl 1264.11063 ·doi:10.4007/annals.2012.175.1.5 |
[2] | V. Beresnevich, D. Dickinson and S. Velani, Measure Theoretic Laws for Lim Sup Sets, Memoits of the American Mathematical Society 179 (2006). ·Zbl 1129.11031 |
[3] | V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Annals of Mathematics 164 (2007), 769-796. ·Zbl 1204.11104 ·doi:10.1007/s00208-006-0055-1 |
[4] | V. I. Bernik and M. M. Dodson, Metric Diophantine Approximation on Manifolds, Cambridge Tracts in Mathematics, Vol. 137, Cambridge University Press, Cambridge, 1999. ·Zbl 0933.11040 ·doi:10.1017/CBO9780511565991 |
[5] | Borel, A., Introduction aux groupes arithmétiques, No. 1341 (1969), Paris ·Zbl 0186.33202 |
[6] | A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, Journal of Differential Geometry 6 (1972), 543-560. ·Zbl 0249.32018 |
[7] | T. D. Browning, Quantitative Arithmetic on Projective Varieties, Progress in Mathematics, Vol. 277, Birkhäuser, Basel, 2009. ·Zbl 1188.14001 ·doi:10.1007/978-3-0346-0129-0 |
[8] | S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, Journa; fúr die Reine und Angewandte Mathematik 359 (1985), 55-89. ·Zbl 0578.22012 |
[9] | S. G. Dani, Bounded orbits of flows on homogeneous spaces, Commentarii Mathematici Helvetici 61 (1986), 636-660. ·Zbl 0627.22013 ·doi:10.1007/BF02621936 |
[10] | D. Dickinson and M. M. Dodson, Simultaneous Diophantine approximation on the circle and Hausdorff dimension, Mathematical Proceedings of the Cambridge Philosophical Society 130 (2001), 515-522. ·Zbl 0992.11046 ·doi:10.1017/S0305004101004984 |
[11] | C. Drutu, Diophantine approximation on rational quadrics, Mathematische Annalen 333 (2005), 405-470. ·Zbl 1082.11047 ·doi:10.1007/s00208-005-0683-x |
[12] | L. Fishman, D. Kleinbock, K. Merrill and D. Simmons, Intrinsic Diophantine approximation on manifolds, preprint (2014), arXiv:1405.7650. ·Zbl 1422.11149 |
[13] | L. Fishman, D. Simmons and M. Urbanski, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, preprint (2013), arXiv:1301.5630. ·Zbl 1442.11001 |
[14] | L. Fukshansky, On similarity classes of well-rounded sublattices of ℤ2, Journal of Number Theory 129 (2009), 2530-2556. ·Zbl 1175.11031 ·doi:10.1016/j.jnt.2009.01.023 |
[15] | A. Ghosh, A. Gorodnik and A. Nevo, Diophantine approximation and automorphic spectrum, International Mathematics Research Notices 21 (2013), 5002-5058. ·Zbl 1370.11077 |
[16] | A. Ghosh, A. Gorodnik and A. Nevo, Metric Diophantine approximation on homogeneous varieties, Compositio Mathematica 150 (2014), 1435-1456. ·Zbl 1309.37005 ·doi:10.1112/S0010437X13007859 |
[17] | D. R. Heath-Brown, A new form of the circle method, and its application to quadratic forms, Journal für die Reine und Agnewandte Mathematik 481 (1996), 149-206. ·Zbl 0857.11049 |
[18] | R. Hill and S. Velani, The Jarník-Besicovitch theorem for geometrically finite Kleinian groups, Proceedings of the London Mathematical Society 77 (1998), 524-550. ·Zbl 0924.11063 ·doi:10.1112/S0024611598000550 |
[19] | Hlawka, E., Approximation von Irrationalzahlen under Pythagoraische Tripel, No. 121, 1-32 (1980), Bonn ·Zbl 0444.10025 |
[20] | L. Ji, Metric compactifcations of locally symmetric spaces, International Journal of Mathematics 9 (1998), 465-491. ·Zbl 0929.32017 ·doi:10.1142/S0129167X98000208 |
[21] | D. Kleinbock and G. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Annals of Mathematics 148 (1998), 339-360. ·Zbl 0922.11061 ·doi:10.2307/120997 |
[22] | D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Inventiones Mathematicae 138 (1999), 451-494. ·Zbl 0934.22016 ·doi:10.1007/s002220050350 |
[23] | E. Leuzinger, Tits geometry, arithmetic groups, and the proof of a conjecture of Siegel, Journal of Lie Theory 14 (2004), 317-338. ·Zbl 1086.53073 |
[24] | K. Mahler, On lattice points in n-dimensional star bodies. I. Existence theorems, Proceedings of the Royal Society of London. Series A 187 (1946), 151-187. ·Zbl 0060.11710 ·doi:10.1098/rspa.1946.0072 |
[25] | C. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geometric and Functional Analysis 20 (2009), 726-740. ·Zbl 1242.11054 ·doi:10.1007/s00039-010-0078-3 |
[26] | N. Moshchevitin, Über die rationalen Punkte auf der Sphäre, preprint (2014), arXiv:1404.2907. ·Zbl 1331.11051 |
[27] | S. J. Patterson, Diophantine approximation in Fuchsian groups, Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences 282 (1976), 527-563. ·Zbl 0338.10028 ·doi:10.1098/rsta.1976.0063 |
[28] | W. M. Schmidt, On badly approximable numbers and certain games, Transactions of the American Mathematical Society 123 (1966), 178-199. ·Zbl 0232.10029 ·doi:10.1090/S0002-9947-1966-0195595-4 |
[29] | W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, Vol. 785, Springer-Verlag, Berlin-New York, 1980. ·Zbl 0421.10019 |
[30] | E. Schmutz, Rational points on the unit sphere, Central European Journal of Mathematics 6 (2008), 482-487. ·Zbl 1176.11037 ·doi:10.2478/s11533-008-0038-4 |
[31] | B. Stratmann and S. Velani, The Patterson measure for geometrically finite Kleinian groups with parabolic elements, new and old, Proceedings of the London Mathematical Society 71 (1995), 197-220. ·Zbl 0821.58026 ·doi:10.1112/plms/s3-71.1.197 |
[32] | D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Mathematica 149 (1982), 215-237. ·Zbl 0517.58028 ·doi:10.1007/BF02392354 |