Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Rational approximation on spheres.(English)Zbl 1332.11070

The very active domain of Diophantine approximation on manifolds is mainly devoted to the study of the approximation of points in a manifold \(X\) by rational points in the ambient space. Here, the authors consider intrinsic Diophantine approximation, where the approximating points lie in the manifold \(X\) itself. The example which is considered in the paper under review is where \(X\) is the unit sphere \(S^n\) in \({\mathbb{R}}^{n+1}\).
The first result is an analog of Dirichlet’s theorem. For any \(n\geq 1\) there exists a constant \(C_n>0\) such that for any \(\alpha\in S^n\) there exist infinitely many \({\mathbf {p}}/q\) in \(S^n\) (\(\mathbf {p} \in \mathbb Z^{n+1}\) primitive, \(q \in \mathbb N\)) with \[ \left| \alpha-\frac{{\mathbf {p}}}{q}\right|<\frac{C_n}{q}\cdotp \] The authors show that \(C_n\) cannot be replaced by an arbitrary small constant : they define the set of badly approximable points on \(S^n\) as the set \({\mathrm{BA}}(S^n)\) of \(\alpha\in S^n\) such that there exists \(c=c(\alpha)>0\) such that, for all \({\mathbf {p}}/q\in S^n\cap {\mathbb {Q}}^{n+1}\), \[ \left| \alpha-\frac{{\mathbf {p}}}{q}\right|>\frac{c}{q}\cdotp \] They show that this set \({\mathrm{BA}}(S^n)\) is thick, meaning that its intersection with any non empty open subset of \(S^n\) has full Hausdorff dimension.
They also prove an analog of Khinchine theorem for intrinsic approximation; in the special case that they consider, they obtain stronger results than the previous ones in [A. Ghosh et al., Compos. Math. 150, No. 8, 1435–1456 (2014;Zbl 1309.37005)]. Also, using the notion of mass transference developed in [V. Beresnevich andS. Velani, Ann. Math. (2) 164, No. 3, 971–992 (2006;Zbl 1148.11033)], the authors obtain refined results involving the Hausdorff measure.
The main tool is a correspondence between approximation and dynamics which is described explicitly here and which is also related with the works ofD. Y. Kleinbock andG. A. Margulis [Invent. Math. 138, No. 3, 451–494 (1999;Zbl 0934.22016)] andC. Druţu [Math. Ann. 333, No. 2, 405–470 (2005;Zbl 1082.11047)].

MSC:

11J83 Metric theory
11H60 Mean value and transfer theorems
11K60 Diophantine approximation in probabilistic number theory
22E30 Analysis on real and complex Lie groups
22E40 Discrete subgroups of Lie groups
22E46 Semisimple Lie groups and their representations
28A78 Hausdorff and packing measures
37A17 Homogeneous flows
53C35 Differential geometry of symmetric spaces

Cite

References:

[1]V. Beresnevich, Rational points near manifolds and metric Diophantine approximation, Annals of Mathematics 175 (2012), 187-235. ·Zbl 1264.11063 ·doi:10.4007/annals.2012.175.1.5
[2]V. Beresnevich, D. Dickinson and S. Velani, Measure Theoretic Laws for Lim Sup Sets, Memoits of the American Mathematical Society 179 (2006). ·Zbl 1129.11031
[3]V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Annals of Mathematics 164 (2007), 769-796. ·Zbl 1204.11104 ·doi:10.1007/s00208-006-0055-1
[4]V. I. Bernik and M. M. Dodson, Metric Diophantine Approximation on Manifolds, Cambridge Tracts in Mathematics, Vol. 137, Cambridge University Press, Cambridge, 1999. ·Zbl 0933.11040 ·doi:10.1017/CBO9780511565991
[5]Borel, A., Introduction aux groupes arithmétiques, No. 1341 (1969), Paris ·Zbl 0186.33202
[6]A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, Journal of Differential Geometry 6 (1972), 543-560. ·Zbl 0249.32018
[7]T. D. Browning, Quantitative Arithmetic on Projective Varieties, Progress in Mathematics, Vol. 277, Birkhäuser, Basel, 2009. ·Zbl 1188.14001 ·doi:10.1007/978-3-0346-0129-0
[8]S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, Journa; fúr die Reine und Angewandte Mathematik 359 (1985), 55-89. ·Zbl 0578.22012
[9]S. G. Dani, Bounded orbits of flows on homogeneous spaces, Commentarii Mathematici Helvetici 61 (1986), 636-660. ·Zbl 0627.22013 ·doi:10.1007/BF02621936
[10]D. Dickinson and M. M. Dodson, Simultaneous Diophantine approximation on the circle and Hausdorff dimension, Mathematical Proceedings of the Cambridge Philosophical Society 130 (2001), 515-522. ·Zbl 0992.11046 ·doi:10.1017/S0305004101004984
[11]C. Drutu, Diophantine approximation on rational quadrics, Mathematische Annalen 333 (2005), 405-470. ·Zbl 1082.11047 ·doi:10.1007/s00208-005-0683-x
[12]L. Fishman, D. Kleinbock, K. Merrill and D. Simmons, Intrinsic Diophantine approximation on manifolds, preprint (2014), arXiv:1405.7650. ·Zbl 1422.11149
[13]L. Fishman, D. Simmons and M. Urbanski, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, preprint (2013), arXiv:1301.5630. ·Zbl 1442.11001
[14]L. Fukshansky, On similarity classes of well-rounded sublattices of ℤ2, Journal of Number Theory 129 (2009), 2530-2556. ·Zbl 1175.11031 ·doi:10.1016/j.jnt.2009.01.023
[15]A. Ghosh, A. Gorodnik and A. Nevo, Diophantine approximation and automorphic spectrum, International Mathematics Research Notices 21 (2013), 5002-5058. ·Zbl 1370.11077
[16]A. Ghosh, A. Gorodnik and A. Nevo, Metric Diophantine approximation on homogeneous varieties, Compositio Mathematica 150 (2014), 1435-1456. ·Zbl 1309.37005 ·doi:10.1112/S0010437X13007859
[17]D. R. Heath-Brown, A new form of the circle method, and its application to quadratic forms, Journal für die Reine und Agnewandte Mathematik 481 (1996), 149-206. ·Zbl 0857.11049
[18]R. Hill and S. Velani, The Jarník-Besicovitch theorem for geometrically finite Kleinian groups, Proceedings of the London Mathematical Society 77 (1998), 524-550. ·Zbl 0924.11063 ·doi:10.1112/S0024611598000550
[19]Hlawka, E., Approximation von Irrationalzahlen under Pythagoraische Tripel, No. 121, 1-32 (1980), Bonn ·Zbl 0444.10025
[20]L. Ji, Metric compactifcations of locally symmetric spaces, International Journal of Mathematics 9 (1998), 465-491. ·Zbl 0929.32017 ·doi:10.1142/S0129167X98000208
[21]D. Kleinbock and G. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Annals of Mathematics 148 (1998), 339-360. ·Zbl 0922.11061 ·doi:10.2307/120997
[22]D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Inventiones Mathematicae 138 (1999), 451-494. ·Zbl 0934.22016 ·doi:10.1007/s002220050350
[23]E. Leuzinger, Tits geometry, arithmetic groups, and the proof of a conjecture of Siegel, Journal of Lie Theory 14 (2004), 317-338. ·Zbl 1086.53073
[24]K. Mahler, On lattice points in n-dimensional star bodies. I. Existence theorems, Proceedings of the Royal Society of London. Series A 187 (1946), 151-187. ·Zbl 0060.11710 ·doi:10.1098/rspa.1946.0072
[25]C. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geometric and Functional Analysis 20 (2009), 726-740. ·Zbl 1242.11054 ·doi:10.1007/s00039-010-0078-3
[26]N. Moshchevitin, Über die rationalen Punkte auf der Sphäre, preprint (2014), arXiv:1404.2907. ·Zbl 1331.11051
[27]S. J. Patterson, Diophantine approximation in Fuchsian groups, Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences 282 (1976), 527-563. ·Zbl 0338.10028 ·doi:10.1098/rsta.1976.0063
[28]W. M. Schmidt, On badly approximable numbers and certain games, Transactions of the American Mathematical Society 123 (1966), 178-199. ·Zbl 0232.10029 ·doi:10.1090/S0002-9947-1966-0195595-4
[29]W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, Vol. 785, Springer-Verlag, Berlin-New York, 1980. ·Zbl 0421.10019
[30]E. Schmutz, Rational points on the unit sphere, Central European Journal of Mathematics 6 (2008), 482-487. ·Zbl 1176.11037 ·doi:10.2478/s11533-008-0038-4
[31]B. Stratmann and S. Velani, The Patterson measure for geometrically finite Kleinian groups with parabolic elements, new and old, Proceedings of the London Mathematical Society 71 (1995), 197-220. ·Zbl 0821.58026 ·doi:10.1112/plms/s3-71.1.197
[32]D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Mathematica 149 (1982), 215-237. ·Zbl 0517.58028 ·doi:10.1007/BF02392354
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp