[1] | Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry–Algorithms and Applications. Springer, Heidelberg (1997) |
[2] | Bhaniramka, P., Wenger, R., Crawfis, R.: Isosurface construction in any dimension using convex hulls. IEEE Trans. on Visualization and Computer Graphics 10, 130–141 (2004) ·doi:10.1109/TVCG.2004.1260765 |
[3] | Bhaniramka, P., Wenger, R., Crawfis, R.: Isosurfacing in higher dimensions. In: Proceedings of Visualization, Salt Lake City, pp. 267–273 (2000) ·doi:10.1109/VISUAL.2000.885704 |
[4] | Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of Isothetic Covers of a Digital Object: A Combinatorial Approach. Journal of Visual Communication and Image Representation 21, 295–310 (2010) ·doi:10.1016/j.jvcir.2010.02.001 |
[5] | Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005) ·doi:10.1007/11499145_94 |
[6] | Brimkov, V.: Discrete volume polyhedrization: Complexity and bounds on performance. In: Proc. of the International Symposium on Computational Methodology of Objects Represented in Images: Fundamentals, Methods and Applications, CompIMAGE 2006, pp. 117–122. Taylor and Francis, Coimbra (2006) |
[7] | Coeurjolly, D., Sivignon, I.: Reversible discrete volume polyhedrization using Marching Cubes simplification. In: SPIE Vision Geometry XII, vol. 5300, pp. 1–11 (2004) ·doi:10.1117/12.525391 |
[8] | Cohen-Or, D., Shamir, A., Shapira, L.: Consistent Mesh Partitioning and Skeletonization using the Shape Diameter Function. The Visual Computer 24, 249–259 (2008) ·doi:10.1007/s00371-007-0197-5 |
[9] | Giles, M., Haimes, R.: Advanced interactive visualization for CFD. Computing Systems in Engineering 1, 51–62 (1990) ·doi:10.1016/0956-0521(90)90047-O |
[10] | Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3D mesh analysis. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 27, Article 145 (2008) |
[11] | Hearn, D., Baker, M.P.: Computer Graphics with OpenGL. Pearson Education Inc., London (2004) |
[12] | Hill, F.S., Kelley, S.M.: Computer Graphics Using OpenGL. Pearson Edcation Inc., London (2007) |
[13] | Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. The Visual Computer 21, 649–658 (2005) ·doi:10.1007/s00371-005-0344-9 |
[14] | Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004) ·Zbl 1064.68090 |
[15] | Livnat, Y., Shen, H.-W., Johnson, C.: A near optimal isosurface extraction algorithm using span space. IEEE Trans. Visualization and Computer Graphics 2, 73–84 (1996) ·doi:10.1109/2945.489388 |
[16] | Lorensen, W.E., Cline, H.E.: Marching Cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21, 163–169 (1987) ·doi:10.1145/37402.37422 |
[17] | Newman, T.S., Yi, H.: A Survey of the Marching Cubes Algorithm. Computers & Graphics 30, 854–879 (2006) ·doi:10.1016/j.cag.2006.07.021 |
[18] | Preparata, F.P., Shamos, M.I.: Computational Geometry–An Introduction. Spinger, New York (1985) ·Zbl 0575.68059 ·doi:10.1007/978-1-4612-1098-6 |
[19] | Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual Part Analogies in 3D Objects. International Journal of Computer Vision 89, 309–326 (2010) ·doi:10.1007/s11263-009-0279-0 |
[20] | Shlafman, S., Tal, A., Katz, S.: Metamorphosis of Polyhedral Surfaces using Decomposition. In: Eurographics 2002, pp. 219–228 (2002) |
[21] | Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH 1994, pp. 311–318 (1994) ·doi:10.1145/192161.192241 |
[22] | Weber, G., Kreylos, O., Ligocki, T., Shalf, J., Hagen, H., Hamann, B.: Extraction of crack-free isosurfaces from adaptive mesh refinement data. In: Proceedings of VisSym 2001, Ascona, Switzerland, pp. 25–34 (2001) ·Zbl 1015.68230 ·doi:10.1007/978-3-7091-6215-6_4 |
[23] | Wilhelms, J., van Gelder, A.: Topological considerations in isosurface generation extended abstract. Computers Graphics 24, 79–86 (1990) ·doi:10.1145/99308.99325 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.