Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow.(English)Zbl 1329.76168

Summary: A new time discretization scheme for the numerical simulation of two-phase flow governed by a thermodynamically consistent diffuse interface model is presented. The scheme is consistent in the sense that it allows for a discrete in time energy inequality. An adaptive spatial discretization is proposed that conserves the energy inequality in the fully discrete setting by applying a suitable post processing step to the adaptive cycle. For the fully discrete scheme a quasi-reliable error estimator is derived which estimates the error both of the flow velocity, and of the phase field. The validity of the energy inequality in the fully discrete setting is numerically investigated.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76Txx Multiphase and multicomponent flows
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Cite

References:

[1]Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, 3, 40 (2012) ·Zbl 1242.76342
[2]Abels, H.; Depner, D.; Garcke, H., Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15, 3, 453-480 (2013) ·Zbl 1273.76421
[3]Abels, H.; Depner, D.; Garcke, H., On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 30, 6, 1175-1190 (2013) ·Zbl 1347.76052
[4]Adams, R. A.; Fournier, J. H.F., Sobolev Spaces, Pure Appl. Math., vol. 140 (2003), Elsevier ·Zbl 1098.46001
[5]Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), Wiley ·Zbl 1008.65076
[6]Aki, G. L.; Dreyer, W.; Giesselmann, J.; Kraus, C., A quasi-incompressible diffuse interface model with phase transition, Math. Models Methods Appl. Sci., 24, 5, 827-861 (2014) ·Zbl 1293.35077
[7]Aland, S.; Voigt, A., Benchmark computations of diffuse interface models for two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 69, 747-761 (2012)
[8]Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) ·Zbl 1398.76051
[9]Baňas, L.; Nürnberg, R., A posteriori estimates for the Cahn-Hilliard equation, Math. Model. Numer. Anal., 43, 5, 1003-1026 (2009) ·Zbl 1190.65137
[10]Barrett, J. W.; Garcke, H.; Nürnberg, R., A stable parametric finite element discretization of two-phase Navier-Stokes flow, J. Sci. Comput., 63, 1, 78-117 (2015) ·Zbl 1320.76059
[11]Blank, L.; Butz, M.; Garcke, H., Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method, ESAIM Control Optim. Calc. Var., 17, 4, 931-954 (2011) ·Zbl 1233.35132
[12]Blowey, J. F.; Elliott, C. M., The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: mathematical analysis, Eur. J. Appl. Math., 2, 233-280 (1991) ·Zbl 0797.35172
[13]Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31, 1, 41-68 (2002) ·Zbl 1057.76060
[14]Bramble, J. H.; Pasciak, J. E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comput., 50, 181, 1-17 (1988) ·Zbl 0643.65017
[15]Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 2, 258-267 (1958) ·Zbl 1431.35066
[16]Carstensen, C., Quasi-interpolation and a-posteriori error analysis in finite element methods, Math. Model. Numer. Anal., 33, 6, 1187-1202 (1999) ·Zbl 0948.65113
[17]Chen, L., \(i\) FEM: An Innovative Finite Element Method Package in Matlab (2008), available at
[18]Chen, Y.; Davis, T. A.; Hager, W. W.; Rajamanickam, S., Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Softw., 35, 3, 1-14 (2008)
[19]Clément, P., Approximation by finite element functions using local regularization, RAIRO. Anal. Numér., 9, 2, 77-84 (1975) ·Zbl 0368.65008
[20]Constantin, P.; Foias, C., Navier-Stokes-Equations (1988), The University of Chicago Press ·Zbl 0687.35071
[21]Davis, T. A., Algorithm 832: umfpack v4.3 - an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., 30, 2, 196-199 (2004) ·Zbl 1072.65037
[22]Ding, H.; Spelt, P. D.M.; Shu, C., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226, 2, 2078-2095 (2007) ·Zbl 1388.76403
[23]Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements, Appl. Math. Sci., vol. 159 (2004), Springer Verlag: Springer Verlag New York ·Zbl 1059.65103
[24]Favvas, E. P.; Mitropoulos, A. C., What is spinodal decomposition?, J. Eng. Sci. Technol. Rev., 1, 25-27 (2008)
[25]Feng, X., Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44, 3, 1049-1072 (2006) ·Zbl 1344.76052
[26]Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5 (1986), Springer ·Zbl 0396.65070
[27]Grün, G., On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities, SIAM J. Numer. Anal., 51, 6, 3036-3061 (2013) ·Zbl 1331.35277
[28]Grün, G.; Klingbeil, F., Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame indifferent diffuse interface model, J. Comput. Phys., 257, A, 708-725 (2014) ·Zbl 1349.76210
[29]Guo, Z.; Lin, P.; Lowengrub, J. S., A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law, J. Comput. Phys., 276, 486-507 (2014) ·Zbl 1349.76057
[30]Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semi-smooth Newton method, SIAM J. Control Optim., 13, 3, 865-888 (2003) ·Zbl 1080.90074
[31]Hintermüller, M.; Hinze, M.; Tber, M. H., An adaptive finite element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem, Optim. Methods Softw., 25, 4-5, 777-811 (2011) ·Zbl 1366.74070
[32]Hintermüller, M.; Hinze, M.; Kahle, C., An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system, J. Comput. Phys., 235, 810-827 (2013) ·Zbl 1291.65300
[33]Hintermüller, M.; Schiela, A.; Wollner, W., The length of the primal-dual path in Moreau-Yosida-based path-following methods for state constrained optimal control, SIAM J. Control Optim., 24, 1, 108-126 (2014) ·Zbl 1408.49026
[34]Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 60, 11, 1259-1288 (2009) ·Zbl 1273.76276
[35]Kay, D.; Loghin, D.; Wathen, A., A preconditioner for the steady state Navier-Stokes equations, SIAM J. Sci. Comput., 24, 1, 237-256 (2002) ·Zbl 1013.65039
[36]Kay, D.; Styles, V.; Welford, R., Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interfaces Free Bound., 10, 1, 15-43 (2008) ·Zbl 1144.35043
[37]Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454, 1978, 2617-2654 (1998) ·Zbl 0927.76007
[38]Otto, F.; Seis, C.; Slepčev, D., Crossover of the coarsening rates in demixing of binary viscous liquids, Commun. Math. Sci., 11, 2, 441-464 (2013) ·Zbl 1325.35091
[39]Siggia, E. D., Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 29, 2, 595-605 (1979)
[40]Temam, R., Navier-Stokes Equations - Theory and Numerical Analysis (1977), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam, New York, Oxford ·Zbl 0383.35057
[41]Verfürth, R., A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations, Calcolo, 47, 149-167 (2010) ·Zbl 1410.76202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp