[1] | Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, 3, 40 (2012) ·Zbl 1242.76342 |
[2] | Abels, H.; Depner, D.; Garcke, H., Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15, 3, 453-480 (2013) ·Zbl 1273.76421 |
[3] | Abels, H.; Depner, D.; Garcke, H., On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 30, 6, 1175-1190 (2013) ·Zbl 1347.76052 |
[4] | Adams, R. A.; Fournier, J. H.F., Sobolev Spaces, Pure Appl. Math., vol. 140 (2003), Elsevier ·Zbl 1098.46001 |
[5] | Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), Wiley ·Zbl 1008.65076 |
[6] | Aki, G. L.; Dreyer, W.; Giesselmann, J.; Kraus, C., A quasi-incompressible diffuse interface model with phase transition, Math. Models Methods Appl. Sci., 24, 5, 827-861 (2014) ·Zbl 1293.35077 |
[7] | Aland, S.; Voigt, A., Benchmark computations of diffuse interface models for two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 69, 747-761 (2012) |
[8] | Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) ·Zbl 1398.76051 |
[9] | Baňas, L.; Nürnberg, R., A posteriori estimates for the Cahn-Hilliard equation, Math. Model. Numer. Anal., 43, 5, 1003-1026 (2009) ·Zbl 1190.65137 |
[10] | Barrett, J. W.; Garcke, H.; Nürnberg, R., A stable parametric finite element discretization of two-phase Navier-Stokes flow, J. Sci. Comput., 63, 1, 78-117 (2015) ·Zbl 1320.76059 |
[11] | Blank, L.; Butz, M.; Garcke, H., Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method, ESAIM Control Optim. Calc. Var., 17, 4, 931-954 (2011) ·Zbl 1233.35132 |
[12] | Blowey, J. F.; Elliott, C. M., The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: mathematical analysis, Eur. J. Appl. Math., 2, 233-280 (1991) ·Zbl 0797.35172 |
[13] | Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31, 1, 41-68 (2002) ·Zbl 1057.76060 |
[14] | Bramble, J. H.; Pasciak, J. E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comput., 50, 181, 1-17 (1988) ·Zbl 0643.65017 |
[15] | Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 2, 258-267 (1958) ·Zbl 1431.35066 |
[16] | Carstensen, C., Quasi-interpolation and a-posteriori error analysis in finite element methods, Math. Model. Numer. Anal., 33, 6, 1187-1202 (1999) ·Zbl 0948.65113 |
[17] | Chen, L., \(i\) FEM: An Innovative Finite Element Method Package in Matlab (2008), available at |
[18] | Chen, Y.; Davis, T. A.; Hager, W. W.; Rajamanickam, S., Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Softw., 35, 3, 1-14 (2008) |
[19] | Clément, P., Approximation by finite element functions using local regularization, RAIRO. Anal. Numér., 9, 2, 77-84 (1975) ·Zbl 0368.65008 |
[20] | Constantin, P.; Foias, C., Navier-Stokes-Equations (1988), The University of Chicago Press ·Zbl 0687.35071 |
[21] | Davis, T. A., Algorithm 832: umfpack v4.3 - an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., 30, 2, 196-199 (2004) ·Zbl 1072.65037 |
[22] | Ding, H.; Spelt, P. D.M.; Shu, C., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226, 2, 2078-2095 (2007) ·Zbl 1388.76403 |
[23] | Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements, Appl. Math. Sci., vol. 159 (2004), Springer Verlag: Springer Verlag New York ·Zbl 1059.65103 |
[24] | Favvas, E. P.; Mitropoulos, A. C., What is spinodal decomposition?, J. Eng. Sci. Technol. Rev., 1, 25-27 (2008) |
[25] | Feng, X., Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44, 3, 1049-1072 (2006) ·Zbl 1344.76052 |
[26] | Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5 (1986), Springer ·Zbl 0396.65070 |
[27] | Grün, G., On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities, SIAM J. Numer. Anal., 51, 6, 3036-3061 (2013) ·Zbl 1331.35277 |
[28] | Grün, G.; Klingbeil, F., Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame indifferent diffuse interface model, J. Comput. Phys., 257, A, 708-725 (2014) ·Zbl 1349.76210 |
[29] | Guo, Z.; Lin, P.; Lowengrub, J. S., A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law, J. Comput. Phys., 276, 486-507 (2014) ·Zbl 1349.76057 |
[30] | Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semi-smooth Newton method, SIAM J. Control Optim., 13, 3, 865-888 (2003) ·Zbl 1080.90074 |
[31] | Hintermüller, M.; Hinze, M.; Tber, M. H., An adaptive finite element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem, Optim. Methods Softw., 25, 4-5, 777-811 (2011) ·Zbl 1366.74070 |
[32] | Hintermüller, M.; Hinze, M.; Kahle, C., An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system, J. Comput. Phys., 235, 810-827 (2013) ·Zbl 1291.65300 |
[33] | Hintermüller, M.; Schiela, A.; Wollner, W., The length of the primal-dual path in Moreau-Yosida-based path-following methods for state constrained optimal control, SIAM J. Control Optim., 24, 1, 108-126 (2014) ·Zbl 1408.49026 |
[34] | Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 60, 11, 1259-1288 (2009) ·Zbl 1273.76276 |
[35] | Kay, D.; Loghin, D.; Wathen, A., A preconditioner for the steady state Navier-Stokes equations, SIAM J. Sci. Comput., 24, 1, 237-256 (2002) ·Zbl 1013.65039 |
[36] | Kay, D.; Styles, V.; Welford, R., Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interfaces Free Bound., 10, 1, 15-43 (2008) ·Zbl 1144.35043 |
[37] | Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454, 1978, 2617-2654 (1998) ·Zbl 0927.76007 |
[38] | Otto, F.; Seis, C.; Slepčev, D., Crossover of the coarsening rates in demixing of binary viscous liquids, Commun. Math. Sci., 11, 2, 441-464 (2013) ·Zbl 1325.35091 |
[39] | Siggia, E. D., Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 29, 2, 595-605 (1979) |
[40] | Temam, R., Navier-Stokes Equations - Theory and Numerical Analysis (1977), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam, New York, Oxford ·Zbl 0383.35057 |
[41] | Verfürth, R., A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations, Calcolo, 47, 149-167 (2010) ·Zbl 1410.76202 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.