57M27 | Invariants of knots and \(3\)-manifolds (MSC2010) |
57M25 | Knots and links in the \(3\)-sphere (MSC2010) |
17B37 | Quantum groups (quantized enveloping algebras) and related deformations |
[1] | Alexander, J. W., Topological invariants of knots and links, Trans. Amer. Math. Soc.30 (1928), 275-306. ·JFM 54.0603.03 ·doi:10.1090/S0002-9947-1928-1501429-1 |
[2] | Benkart, G., Kang, S.-J. and Kashiwara, M., Crystal bases for the quantum superalgebra \(U_q(\mathfrak{gl}(m,n))\), J. Amer. Math. Soc.13 (2000), 295-331. ·Zbl 0963.17010 ·doi:10.1090/S0894-0347-00-00321-0 |
[3] | Benkart, G. and Moon, D., Planar Rook Algebras and Tensor Representations of gl(1∣1), Comm. Algebra41 (2013), 2405-2416. ·Zbl 1269.05115 ·doi:10.1080/00927872.2012.658533 |
[4] | Brundan, J. and Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS)14 (2012), 373-419. ·Zbl 1243.17004 ·doi:10.4171/JEMS/306 |
[5] | Chari, V. and Pressley, A., A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. ·Zbl 0839.17009 |
[6] | Conway, J. H., An enumeration of knots and links, and some of their algebraic properties, Oxford, 1967, Oxford ·Zbl 0202.54703 ·doi:10.1016/B978-0-08-012975-4.50034-5 |
[7] | De Wit, D., Ishii, A. and Links, J., Infinitely many two-variable generalisations of the Alexander-Conway polynomial, Algebr. Geom. Topol.5 (2005), 405-418. ·Zbl 1079.57004 ·doi:10.2140/agt.2005.5.405 |
[8] | Deguchi, T., Braid group representations and link polynomials derived from generalized SU(n) vertex models, J. Phys. Soc. Japan58 (1989), 3441-3444. ·doi:10.1143/JPSJ.58.3441 |
[9] | Geer, N. and Patureau-Mirand, B., Multivariable link invariants arising from \(\mathfrak{sl}(2\mid1)\) and the Alexander polynomial, J. Pure Appl. Algebra210 (2007), 283-298. ·Zbl 1121.57005 ·doi:10.1016/j.jpaa.2006.09.015 |
[10] | Geer, N. and Patureau-Mirand, B., Multivariable link invariants arising from Lie superalgebras of type I, J. Knot Theory Ramifications19 (2010), 93-115. ·Zbl 1200.57010 ·doi:10.1142/S0218216510007784 |
[11] | Gould, M. D., Links, J. R. and Zhang, Y.-Z., Type-I quantum superalgebras, q-supertrace, and two-variable link polynomials, J. Math. Phys.37 (1996), 987-1003. ·Zbl 0877.17008 ·doi:10.1063/1.531422 |
[12] | Kassel, C., Quantum Groups, Graduate Texts in Mathematics 155, Springer, New York, 1995. ·Zbl 0808.17003 |
[13] | Kassel, C. and Turaev, V., Braid Groups, Graduate Texts in Mathematics 247, Springer, New York, 2008. ·Zbl 1208.20041 |
[14] | Kauffman, L. H. and Saleur, H., Free fermions and the Alexander-Conway polynomial, Comm. Math. Phys.141 (1991), 293-327. ·Zbl 0751.57004 ·doi:10.1007/BF02101508 |
[15] | Khoroshkin, S. M. and Tolstoy, V. N., Universal R-matrix for quantized (super)algebras, Comm. Math. Phys.141 (1991), 599-617. ·Zbl 0744.17015 ·doi:10.1007/BF02102819 |
[16] | Lickorish, W. B. R., An Introduction to Knot Theory, Graduate Texts in Mathematics 175, Springer, New York, 1997. ·Zbl 0886.57001 |
[17] | Manin, Y. I., Gauge Field Theory and Complex Geometry, Nauka, Moskow, 1984 (Russian). English transl.: 2nd ed., Grundlehren der Mathematischen Wissenschaften 289, Springer, Berlin, 1997. ·Zbl 0884.53002 |
[18] | Ohtsuki, T., Quantum Invariants, Series on Knots and Everything 29, World Scientific, River Edge, NJ, 2002. ·Zbl 0991.57001 |
[19] | Reshetikhin, N. Y. and Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys.127 (1990), 1-26. ·Zbl 0768.57003 ·doi:10.1007/BF02096491 |
[20] | Saleur, H., Symmetries of the XX chain and applications, Trieste, 1989, River Edge, NJ ·Zbl 0745.17024 |
[21] | Tanisaki, T., Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, Kyoto, 1991, River Edge, NJ ·Zbl 0870.17007 |
[22] | Viro, O. Y., Quantum relatives of the Alexander polynomial, Algebra i Analiz18 (2006), 63-157. English transl.: St. Petersburg. Math. J.18 (2007), 391-457. ·Zbl 1149.57024 |
[23] | Zhang, R. B., Quantum enveloping superalgebras and link invariants, J. Math. Phys.43 (2002), 2029-2048. ·Zbl 1059.17012 ·doi:10.1063/1.1436564 |