Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The Alexander polynomial as quantum invariant of links.(English)Zbl 1329.57021

It is well known that the Alexander polynomial of a link can be constructed as the quantum invariant associated to the quantum enveloping superalgebra \(U_q(\mathfrak{gl}(1|1))\) [L.H. Kauffman andH. Saleur, Commun. Math. Phys. 141, No. 2, 293–327 (1991;Zbl 0751.57004)].
Author’s summary: “In these notes we collect some results about finite-dimensional representations of \(U_q(\mathfrak{gl}(1|1))\) and related invariants of framed tangles, which are well-known to experts but difficult to find in the literature. In particular, we give an explicit description of the ribbon structure on the category of finite-dimensional \(U_q(\mathfrak{gl}(1|1))\)-representations and we use it to construct the corresponding quantum invariant of framed tangles. We explain in detail why this invariant vanishes on closed links and how one can modify the construction to get a non-zero invariant of framed closed links. Finally we show how to obtain the Alexander polynomial by considering the vector representation of \(U_q(\mathfrak{gl}(1|1))\).”

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Citations:

Zbl 0751.57004

Cite

References:

[1]Alexander, J. W., Topological invariants of knots and links, Trans. Amer. Math. Soc.30 (1928), 275-306. ·JFM 54.0603.03 ·doi:10.1090/S0002-9947-1928-1501429-1
[2]Benkart, G., Kang, S.-J. and Kashiwara, M., Crystal bases for the quantum superalgebra \(U_q(\mathfrak{gl}(m,n))\), J. Amer. Math. Soc.13 (2000), 295-331. ·Zbl 0963.17010 ·doi:10.1090/S0894-0347-00-00321-0
[3]Benkart, G. and Moon, D., Planar Rook Algebras and Tensor Representations of gl(1∣1), Comm. Algebra41 (2013), 2405-2416. ·Zbl 1269.05115 ·doi:10.1080/00927872.2012.658533
[4]Brundan, J. and Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS)14 (2012), 373-419. ·Zbl 1243.17004 ·doi:10.4171/JEMS/306
[5]Chari, V. and Pressley, A., A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. ·Zbl 0839.17009
[6]Conway, J. H., An enumeration of knots and links, and some of their algebraic properties, Oxford, 1967, Oxford ·Zbl 0202.54703 ·doi:10.1016/B978-0-08-012975-4.50034-5
[7]De Wit, D., Ishii, A. and Links, J., Infinitely many two-variable generalisations of the Alexander-Conway polynomial, Algebr. Geom. Topol.5 (2005), 405-418. ·Zbl 1079.57004 ·doi:10.2140/agt.2005.5.405
[8]Deguchi, T., Braid group representations and link polynomials derived from generalized SU(n) vertex models, J. Phys. Soc. Japan58 (1989), 3441-3444. ·doi:10.1143/JPSJ.58.3441
[9]Geer, N. and Patureau-Mirand, B., Multivariable link invariants arising from \(\mathfrak{sl}(2\mid1)\) and the Alexander polynomial, J. Pure Appl. Algebra210 (2007), 283-298. ·Zbl 1121.57005 ·doi:10.1016/j.jpaa.2006.09.015
[10]Geer, N. and Patureau-Mirand, B., Multivariable link invariants arising from Lie superalgebras of type I, J. Knot Theory Ramifications19 (2010), 93-115. ·Zbl 1200.57010 ·doi:10.1142/S0218216510007784
[11]Gould, M. D., Links, J. R. and Zhang, Y.-Z., Type-I quantum superalgebras, q-supertrace, and two-variable link polynomials, J. Math. Phys.37 (1996), 987-1003. ·Zbl 0877.17008 ·doi:10.1063/1.531422
[12]Kassel, C., Quantum Groups, Graduate Texts in Mathematics 155, Springer, New York, 1995. ·Zbl 0808.17003
[13]Kassel, C. and Turaev, V., Braid Groups, Graduate Texts in Mathematics 247, Springer, New York, 2008. ·Zbl 1208.20041
[14]Kauffman, L. H. and Saleur, H., Free fermions and the Alexander-Conway polynomial, Comm. Math. Phys.141 (1991), 293-327. ·Zbl 0751.57004 ·doi:10.1007/BF02101508
[15]Khoroshkin, S. M. and Tolstoy, V. N., Universal R-matrix for quantized (super)algebras, Comm. Math. Phys.141 (1991), 599-617. ·Zbl 0744.17015 ·doi:10.1007/BF02102819
[16]Lickorish, W. B. R., An Introduction to Knot Theory, Graduate Texts in Mathematics 175, Springer, New York, 1997. ·Zbl 0886.57001
[17]Manin, Y. I., Gauge Field Theory and Complex Geometry, Nauka, Moskow, 1984 (Russian). English transl.: 2nd ed., Grundlehren der Mathematischen Wissenschaften 289, Springer, Berlin, 1997. ·Zbl 0884.53002
[18]Ohtsuki, T., Quantum Invariants, Series on Knots and Everything 29, World Scientific, River Edge, NJ, 2002. ·Zbl 0991.57001
[19]Reshetikhin, N. Y. and Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys.127 (1990), 1-26. ·Zbl 0768.57003 ·doi:10.1007/BF02096491
[20]Saleur, H., Symmetries of the XX chain and applications, Trieste, 1989, River Edge, NJ ·Zbl 0745.17024
[21]Tanisaki, T., Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, Kyoto, 1991, River Edge, NJ ·Zbl 0870.17007
[22]Viro, O. Y., Quantum relatives of the Alexander polynomial, Algebra i Analiz18 (2006), 63-157. English transl.: St. Petersburg. Math. J.18 (2007), 391-457. ·Zbl 1149.57024
[23]Zhang, R. B., Quantum enveloping superalgebras and link invariants, J. Math. Phys.43 (2002), 2029-2048. ·Zbl 1059.17012 ·doi:10.1063/1.1436564
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp