Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Higher regularity of the free boundary in the elliptic Signorini problem.(English)Zbl 1329.35362

In this very interesting paper, the authors study the higher regularity of the free boundary for the elliptic Signorini problem. This consists of minimizing the Dirichlet functional \(J(v):=\int_{B_R^+}|\nabla v|^2dx\) over \[\mathcal{K}=\{v\in W^{1,2}(B_R^+) \;: \;v\geq 0\text{ on } B_R'\}, \] where \(B_R^+=B_R\cap\{x_n>0\}\) and \(B_R'=B_R\cap\{x_n=0\}\).
The coincidence set is denoted by \(\Lambda_u=\{x\in B_R' \;: \;u(x)=0\}\) and the free boundary by \(\Gamma_u=\partial_{B_R'}\{x\in B_R' \;: \;u(x)>0\}\). By using a partial hodograph-Legendre transformation, the authors show that the regular part of the free boundary (that is, the set \(\mathcal{R}_u\) of points \(x_0\in \Gamma_u\) such that the blowups of \(u\) at \(x_0\) have the form \(c_n\text{Re}(x_{n-1}+ix_n)^{3/2}\) after a possible rotation of coordinate axes in \(\mathbb{R}^{n-1}\)) is real analytic. It is assumed that all free boundary points are regular and that there exists \(f\in C^{1,\alpha}(\overline{B_R'\cap \{x_{n-1}=0\}})\) with \(f(0)=|\nabla_{x''}f(0)|=0\) such that \[ \Gamma_u=\{(x'',x_{n-1})\in B_R' \;: \;x_{n-1}=f(x'')\}, \]
\[\Lambda_u=\{(x'',x_{n-1})\in B_R' \;: \;x_{n-1}\leq f(x'')\}. \]
The main tool used to improve on the known regularity of the free boundary is a partial hodograph-Legendre transformation. The goal is to straighten the free boundary and then apply the boundary regularity of the solution to the transformed elliptic PDE. The invertibility of the hodograph transform (which is only \(C^{0,1/2}\) regular) is overcome by studying the precise asymptotic behavior of the solutions near regular free boundary points. The difficulty stemming from the fact that the equation satisfied by the Legendre transform is degenerate is tackled by observing that it has a subelliptic structure, which can be viewed as a perturbation of the Baouendi-Grushin operator. The \(L^p\) theory available for that operator and a bootstrapping argument lead to the real analyticity of the free boundary.

MSC:

35R35 Free boundary problems for PDEs
35H20 Subelliptic equations

Cite

References:

[1]Almgren, F. J., Almgren’s big regularity paper, (World Scientific Monograph Series in Mathematics, vol. 1 (2000), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ), \(Q\)-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2; With a preface by Jean E. Taylor and Vladimir Scheffer. MR1777737 (2003d:49001) ·Zbl 0985.49001
[2]Athanasopoulos, I.; Caffarelli, L. A., Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts.35(34), 49-66, 226. http://dx.doi.org/10.1007/s10958-005-0496-1 (English, with English and Russian summaries); Eng- lish transl., J. Math. Sci. (N. Y.) 132(3) (2006), 274-284. MR2120184 (2006i:35053) ·Zbl 1108.35038
[3]Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S., The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math., 130, 2, 485-498 (2008), MR2405165 (2009g:35345) ·Zbl 1185.35339
[4]Caffarelli, L. A.; Salsa, S.; Silvestre, L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171, 2, 425-461 (2008), MR2367025 (2009g:35347) ·Zbl 1148.35097
[5]Caffarelli, L. A.; Roquejoffre, J.-M.; Sire, Y., Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12, 5, 1151-1179 (2010), MR2677613 (2011f:49024) ·Zbl 1221.35453
[6]Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 7-9, 1245-1260 (2007), MR2354493 (2009k:35096) ·Zbl 1143.26002
[8]De Silva, D.; Savin, O., \(C^{2, \alpha}\) regularity of flat free boundaries for the thin one-phase problem, J. Differential Equations, 253, 8, 2420-2459 (2012), MR2950457 ·Zbl 1248.35238
[13]Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 2, 161-207 (1975) ·Zbl 0312.35026
[14]Garofalo, N.; Petrosyan, A., Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math., 177, 2, 415-461 (2009), MR2511747 (2010m:35574) ·Zbl 1175.35154
[15]Heinonen, J., (Lectures on analysis on metric spaces. Lectures on analysis on metric spaces, Universitext (2001), Springer-Verlag: Springer-Verlag New York), MR1800917 (2002c:30028) ·Zbl 0985.46008
[16]Hewitt, E.; Ross, K. A., (Abstract Harmonic Analysis, Vol. I. Abstract Harmonic Analysis, Vol. I, Second Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115 (1979), Springer-Verlag: Springer-Verlag Berlin), Structure of topological groups, integration theory, group representations ·Zbl 0416.43001
[17]Kato, K., New idea for proof of analyticity of solutions to analytic nonlinear elliptic equations, SUT J. Math., 32, 2, 157-161 (1996) ·Zbl 0894.35036
[18]Kinderlehrer, D.; Nirenberg, L., Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 4, 2, 373-391 (1977), MR0440187 (55 #13066) ·Zbl 0352.35023
[19]Lewy, H., On the coincidence set in variational inequalities, J. Differential Geom., 6, 497-501 (1972), Collection of articles dedicated to S. S. Chern and D. C. Spencer on their sixtieth birthdays. MR0320343 (47 #8882) ·Zbl 0255.31002
[21]Petrosyan, A.; Shahgholian, H.; Uraltseva, N., Regularity of free boundaries in obstacle-type problems, (Graduate Studies in Mathematics, vol. 136 (2012), American Mathematical Society: American Mathematical Society Providence, RI), MR2962060 ·Zbl 1254.35001
[22]Reiter, H., Über den Satz von Wiener und lokalkompakte Gruppen, Comment. Math. Helv., 49, 333-364 (1974) ·Zbl 0292.43007
[23]Sánchez-Calle, A., \(L^p\) estimates for degenerate elliptic equations, Rev. Mat. Iberoam., 4, 1, 177-185 (1988) ·Zbl 0711.35021
[24]Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, (Murphy, Timothy S., Monographs in Harmonic Analysis, III. Monographs in Harmonic Analysis, III, Princeton Mathematical Series, vol. 43 (1993), Princeton University Press: Princeton University Press Princeton, NJ) ·Zbl 0821.42001
[25]C. J., Xu, Subelliptic variational problems, Bull. Soc. Math. France, 118, 2, 147-169 (1990) ·Zbl 0717.49004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp