[1] | Almgren, F. J., Almgren’s big regularity paper, (World Scientific Monograph Series in Mathematics, vol. 1 (2000), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ), \(Q\)-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2; With a preface by Jean E. Taylor and Vladimir Scheffer. MR1777737 (2003d:49001) ·Zbl 0985.49001 |
[2] | Athanasopoulos, I.; Caffarelli, L. A., Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts.35(34), 49-66, 226. http://dx.doi.org/10.1007/s10958-005-0496-1 (English, with English and Russian summaries); Eng- lish transl., J. Math. Sci. (N. Y.) 132(3) (2006), 274-284. MR2120184 (2006i:35053) ·Zbl 1108.35038 |
[3] | Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S., The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math., 130, 2, 485-498 (2008), MR2405165 (2009g:35345) ·Zbl 1185.35339 |
[4] | Caffarelli, L. A.; Salsa, S.; Silvestre, L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171, 2, 425-461 (2008), MR2367025 (2009g:35347) ·Zbl 1148.35097 |
[5] | Caffarelli, L. A.; Roquejoffre, J.-M.; Sire, Y., Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12, 5, 1151-1179 (2010), MR2677613 (2011f:49024) ·Zbl 1221.35453 |
[6] | Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 7-9, 1245-1260 (2007), MR2354493 (2009k:35096) ·Zbl 1143.26002 |
[8] | De Silva, D.; Savin, O., \(C^{2, \alpha}\) regularity of flat free boundaries for the thin one-phase problem, J. Differential Equations, 253, 8, 2420-2459 (2012), MR2950457 ·Zbl 1248.35238 |
[13] | Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 2, 161-207 (1975) ·Zbl 0312.35026 |
[14] | Garofalo, N.; Petrosyan, A., Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math., 177, 2, 415-461 (2009), MR2511747 (2010m:35574) ·Zbl 1175.35154 |
[15] | Heinonen, J., (Lectures on analysis on metric spaces. Lectures on analysis on metric spaces, Universitext (2001), Springer-Verlag: Springer-Verlag New York), MR1800917 (2002c:30028) ·Zbl 0985.46008 |
[16] | Hewitt, E.; Ross, K. A., (Abstract Harmonic Analysis, Vol. I. Abstract Harmonic Analysis, Vol. I, Second Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115 (1979), Springer-Verlag: Springer-Verlag Berlin), Structure of topological groups, integration theory, group representations ·Zbl 0416.43001 |
[17] | Kato, K., New idea for proof of analyticity of solutions to analytic nonlinear elliptic equations, SUT J. Math., 32, 2, 157-161 (1996) ·Zbl 0894.35036 |
[18] | Kinderlehrer, D.; Nirenberg, L., Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 4, 2, 373-391 (1977), MR0440187 (55 #13066) ·Zbl 0352.35023 |
[19] | Lewy, H., On the coincidence set in variational inequalities, J. Differential Geom., 6, 497-501 (1972), Collection of articles dedicated to S. S. Chern and D. C. Spencer on their sixtieth birthdays. MR0320343 (47 #8882) ·Zbl 0255.31002 |
[21] | Petrosyan, A.; Shahgholian, H.; Uraltseva, N., Regularity of free boundaries in obstacle-type problems, (Graduate Studies in Mathematics, vol. 136 (2012), American Mathematical Society: American Mathematical Society Providence, RI), MR2962060 ·Zbl 1254.35001 |
[22] | Reiter, H., Über den Satz von Wiener und lokalkompakte Gruppen, Comment. Math. Helv., 49, 333-364 (1974) ·Zbl 0292.43007 |
[23] | Sánchez-Calle, A., \(L^p\) estimates for degenerate elliptic equations, Rev. Mat. Iberoam., 4, 1, 177-185 (1988) ·Zbl 0711.35021 |
[24] | Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, (Murphy, Timothy S., Monographs in Harmonic Analysis, III. Monographs in Harmonic Analysis, III, Princeton Mathematical Series, vol. 43 (1993), Princeton University Press: Princeton University Press Princeton, NJ) ·Zbl 0821.42001 |
[25] | C. J., Xu, Subelliptic variational problems, Bull. Soc. Math. France, 118, 2, 147-169 (1990) ·Zbl 0717.49004 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.