Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Weak centers and local bifurcations of critical periods at infinity for a class of rational systems.(English)Zbl 1329.34065

Summary: We describe an approach to studying the center problem and local bifurcations of critical periods at infinity for a class of differential systems. We then solve the problem and investigate the bifurcations for a class of rational differential systems with a cubic polynomial as its numerator.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations

Software:

primdec;SINGULAR

Cite

References:

[1]Bautin, N. On the number of limit cyckes which appear with the variation fo coefficients from an equilibrium position of focus or center type. Amer. Math. Soc. Trans., 100: 397–413 (1954)
[2]Blows, T.R., Rousseau, C. Bifurcation at infinity in polynomial vector fields. Journal of Differential Equations, 104: 215–242 (1993) ·Zbl 0778.34024 ·doi:10.1006/jdeq.1993.1070
[3]Chen, X., Zhang, W. Decomposition of algebraic sets and applications to weak centers of cubic systems. J. Comput. Appl. Math., 232: 565–581 (2009) ·Zbl 1178.13015 ·doi:10.1016/j.cam.2009.06.029
[4]Chicone, C., Jacobs, M. Bifurcation of critical periods for plane vector fields. Transactions Amer. Math. Soc., 312: 319–329 (1989) ·Zbl 0678.58027 ·doi:10.1090/S0002-9947-1989-0930075-2
[5]Cima, A., Gasull, A., da Silvab, P.R. On the number of critical periods for planar polynomial systems. Nonlinear Analysis, 69: 1889–1903 (2008) ·Zbl 1157.34021 ·doi:10.1016/j.na.2007.07.031
[6]Decker, W., Pfister, G., Schönemann, H. A Singular 2.0 library for computing the primary decomposition and radical of ideals. primdec.lib, http://www.singular.uni-kl.de , 2001
[7]Du, Z. On the critical periods of Liénard systems with cubic restoring forces. International Journal of Mathematics and Mathematical Sciences, 61: 3259–3274 (2004) ·Zbl 1126.34328 ·doi:10.1155/S0161171204402245
[8]Gasull, A., Zhao, Y. Bifurcation of critical periods from the rigid quadratic isochronous vector field. Bulletin des Sciences Mathematiques, 132: 291–312 (2008) ·Zbl 1160.34035
[9]Gianni, P., Trager, B., Zacharias, G. Gröbner bases and primary decomposition of polynomials. J. Symbolic Comput., 6: 146–167 (1988) ·Zbl 0667.13008 ·doi:10.1016/S0747-7171(88)80040-3
[10]Greuel, G.M., Pfister, G., Schönemann, H. Singular 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern, http://www.singular.uni-kl.de. ., 2005
[11]Jarrah, A., Laubenbacher, R., Romanovski, V. The Sibirsky component of the center variety of polynomial systems. Journal of Symbolic Computation, 35: 577–589 (2003) ·Zbl 1035.34017 ·doi:10.1016/S0747-7171(03)00016-6
[12]Lin, Y., Li, J. The canonical form of the autonomous planar system and the critical point of the closed orbit period. Acta Mathematica Sinica, 34: 490–501 (1991) ·Zbl 0744.34041
[13]Liu, Y., Chen, H. Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system. Acta Mathematicae Applicatae sinica, 25: 295–302 (2002) (in Chinese) ·Zbl 1014.34021
[14]Liu, Y., Huang, W. Center and isochronous center at infinity for differential systems, Bulletin des Sciences. Mathématiques, 128: 77–89 (2004) ·Zbl 1048.34066 ·doi:10.1016/j.bulsci.2003.07.003
[15]Liu, Y., Huang, W. A new method to determine isochronous center conditions for polynomial differential systems. Bulletin des Sciences Mathématiques, 127: 133–148 (2003) ·Zbl 1034.34032 ·doi:10.1016/S0007-4497(02)00006-4
[16]Liu, Y., Li, J. Periodic constants and time-angle difference of isochronous centers for complex analytic systems. Int. J. Bifurcation and Chaos, 16: 3747–3757 (2006) ·Zbl 1140.34301 ·doi:10.1142/S0218127406017142
[17]Liu, Y., Li, J., Huang, W. Singular point values, center problem and bifurcations of limit cycles of two dimensional differential autonomous systems. Beijing: Science Press, 2008
[18]Romanovski, V.G., Han, M. Critical period bifurcations of a cubic system. J. Phys. A: Math. and Gen., 36: 5011–5022 (2003) ·Zbl 1037.34034 ·doi:10.1088/0305-4470/36/18/306
[19]Romanovski V.G., Shafer, D.S. The center and cyclicity problems: a computational algebra approach. Boston: Birkhäuser Boston, Inc., MA, 2009 ·Zbl 1192.34003
[20]Rousseau, C., Toni, B. Local bifurcations of critical periods in the reduced Kukles system. Can. J. Math., 49: 338–358 (1997) ·Zbl 0885.34033 ·doi:10.4153/CJM-1997-017-4
[21]Rousseau, C., Toni, B. Local bifurcations of critical periods in vector fields with homogeneous nonliearities of the third degree. Can. J. Math., 36: 473–484 (1993) ·Zbl 0792.58030 ·doi:10.4153/CMB-1993-063-7
[22]Wang, D. Elimination methods. Texts and Monographs in Symbolic Computation. Springer-Verlag, Vienna, 2001
[23]Yu, P., Han, M. Critical periods of planar revetible vector field with third-degree polynomial functions. International Journal of Bifurcation and Chaos, 19(1): 419–433 (2009) ·Zbl 1170.34316 ·doi:10.1142/S0218127409022981
[24]Zhang, W., Hou, X., Zeng, Z., Weak centres and bifurcation of critical periods in reversible cubic systems. Comput. Math. Appl., 40(6–7): 771–782 (2000) ·Zbl 0962.34025 ·doi:10.1016/S0898-1221(00)00195-4
[25]Zou, L., Chen, X., Zhang, W. Local bifurcations of critical periods for cubic Liénard equations with cubic damping. Journal of Computational and Applied Mathematics, 222: 404–410 (2008) ·Zbl 1163.34349 ·doi:10.1016/j.cam.2007.11.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp