34C05 | Topological structure of integral curves, singular points, limit cycles of ordinary differential equations |
34C23 | Bifurcation theory for ordinary differential equations |
[1] | Bautin, N. On the number of limit cyckes which appear with the variation fo coefficients from an equilibrium position of focus or center type. Amer. Math. Soc. Trans., 100: 397–413 (1954) |
[2] | Blows, T.R., Rousseau, C. Bifurcation at infinity in polynomial vector fields. Journal of Differential Equations, 104: 215–242 (1993) ·Zbl 0778.34024 ·doi:10.1006/jdeq.1993.1070 |
[3] | Chen, X., Zhang, W. Decomposition of algebraic sets and applications to weak centers of cubic systems. J. Comput. Appl. Math., 232: 565–581 (2009) ·Zbl 1178.13015 ·doi:10.1016/j.cam.2009.06.029 |
[4] | Chicone, C., Jacobs, M. Bifurcation of critical periods for plane vector fields. Transactions Amer. Math. Soc., 312: 319–329 (1989) ·Zbl 0678.58027 ·doi:10.1090/S0002-9947-1989-0930075-2 |
[5] | Cima, A., Gasull, A., da Silvab, P.R. On the number of critical periods for planar polynomial systems. Nonlinear Analysis, 69: 1889–1903 (2008) ·Zbl 1157.34021 ·doi:10.1016/j.na.2007.07.031 |
[6] | Decker, W., Pfister, G., Schönemann, H. A Singular 2.0 library for computing the primary decomposition and radical of ideals. primdec.lib, http://www.singular.uni-kl.de , 2001 |
[7] | Du, Z. On the critical periods of Liénard systems with cubic restoring forces. International Journal of Mathematics and Mathematical Sciences, 61: 3259–3274 (2004) ·Zbl 1126.34328 ·doi:10.1155/S0161171204402245 |
[8] | Gasull, A., Zhao, Y. Bifurcation of critical periods from the rigid quadratic isochronous vector field. Bulletin des Sciences Mathematiques, 132: 291–312 (2008) ·Zbl 1160.34035 |
[9] | Gianni, P., Trager, B., Zacharias, G. Gröbner bases and primary decomposition of polynomials. J. Symbolic Comput., 6: 146–167 (1988) ·Zbl 0667.13008 ·doi:10.1016/S0747-7171(88)80040-3 |
[10] | Greuel, G.M., Pfister, G., Schönemann, H. Singular 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern, http://www.singular.uni-kl.de. ., 2005 |
[11] | Jarrah, A., Laubenbacher, R., Romanovski, V. The Sibirsky component of the center variety of polynomial systems. Journal of Symbolic Computation, 35: 577–589 (2003) ·Zbl 1035.34017 ·doi:10.1016/S0747-7171(03)00016-6 |
[12] | Lin, Y., Li, J. The canonical form of the autonomous planar system and the critical point of the closed orbit period. Acta Mathematica Sinica, 34: 490–501 (1991) ·Zbl 0744.34041 |
[13] | Liu, Y., Chen, H. Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system. Acta Mathematicae Applicatae sinica, 25: 295–302 (2002) (in Chinese) ·Zbl 1014.34021 |
[14] | Liu, Y., Huang, W. Center and isochronous center at infinity for differential systems, Bulletin des Sciences. Mathématiques, 128: 77–89 (2004) ·Zbl 1048.34066 ·doi:10.1016/j.bulsci.2003.07.003 |
[15] | Liu, Y., Huang, W. A new method to determine isochronous center conditions for polynomial differential systems. Bulletin des Sciences Mathématiques, 127: 133–148 (2003) ·Zbl 1034.34032 ·doi:10.1016/S0007-4497(02)00006-4 |
[16] | Liu, Y., Li, J. Periodic constants and time-angle difference of isochronous centers for complex analytic systems. Int. J. Bifurcation and Chaos, 16: 3747–3757 (2006) ·Zbl 1140.34301 ·doi:10.1142/S0218127406017142 |
[17] | Liu, Y., Li, J., Huang, W. Singular point values, center problem and bifurcations of limit cycles of two dimensional differential autonomous systems. Beijing: Science Press, 2008 |
[18] | Romanovski, V.G., Han, M. Critical period bifurcations of a cubic system. J. Phys. A: Math. and Gen., 36: 5011–5022 (2003) ·Zbl 1037.34034 ·doi:10.1088/0305-4470/36/18/306 |
[19] | Romanovski V.G., Shafer, D.S. The center and cyclicity problems: a computational algebra approach. Boston: Birkhäuser Boston, Inc., MA, 2009 ·Zbl 1192.34003 |
[20] | Rousseau, C., Toni, B. Local bifurcations of critical periods in the reduced Kukles system. Can. J. Math., 49: 338–358 (1997) ·Zbl 0885.34033 ·doi:10.4153/CJM-1997-017-4 |
[21] | Rousseau, C., Toni, B. Local bifurcations of critical periods in vector fields with homogeneous nonliearities of the third degree. Can. J. Math., 36: 473–484 (1993) ·Zbl 0792.58030 ·doi:10.4153/CMB-1993-063-7 |
[22] | Wang, D. Elimination methods. Texts and Monographs in Symbolic Computation. Springer-Verlag, Vienna, 2001 |
[23] | Yu, P., Han, M. Critical periods of planar revetible vector field with third-degree polynomial functions. International Journal of Bifurcation and Chaos, 19(1): 419–433 (2009) ·Zbl 1170.34316 ·doi:10.1142/S0218127409022981 |
[24] | Zhang, W., Hou, X., Zeng, Z., Weak centres and bifurcation of critical periods in reversible cubic systems. Comput. Math. Appl., 40(6–7): 771–782 (2000) ·Zbl 0962.34025 ·doi:10.1016/S0898-1221(00)00195-4 |
[25] | Zou, L., Chen, X., Zhang, W. Local bifurcations of critical periods for cubic Liénard equations with cubic damping. Journal of Computational and Applied Mathematics, 222: 404–410 (2008) ·Zbl 1163.34349 ·doi:10.1016/j.cam.2007.11.005 |