[1] | Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of algebraic curves. Volume II. In: Harris, J.D. (eds.) Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, pp. xxx+963. Springer, Heidelberg (2011) ·Zbl 1235.14002 |
[2] | Brini, A., Carlet, G., Romano, S., Rossi, P.: Rational reductions of the 2D-Toda hierarchy and mirror symmetry. arXiv:1401.5725 ·Zbl 1368.81139 |
[3] | Brini A., Carlet G., Rossi P.: Integrable hierarchies and the mirror model of local \[{\mathbb{C}P^1}\] CP1 . Physica D Nonlinear Phenomena 241, 2156-2167 (2012) ·Zbl 1322.37030 ·doi:10.1016/j.physd.2011.09.011 |
[4] | Buryak, A.: Dubrovin-Zhang hierarchy for the Hodge integrals. arXiv:1308.5716 ·Zbl 1326.37041 |
[5] | Buryak, A.: Equivalence of the open KdV and the open Virasoro equations for the moduli space of Riemann surfaces with boundary. arXiv:1409.3888 ·Zbl 1323.35158 |
[6] | Buryak, A.: Open intersection numbers and a wave function of the KdV hierarchy. arXiv:1409.7957 ·Zbl 1339.35265 |
[7] | Buryak A., Posthuma H., Shadrin S.: On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket. J. Geom. Phys. 62(7), 1639-1651 (2012) ·Zbl 1242.53113 ·doi:10.1016/j.geomphys.2012.03.006 |
[8] | Buryak A., Posthuma H., Shadrin S.: A polynomial bracket for the Dubrovin-Zhang hierarchies. J. Diff. Geom. 92(1), 153-185 (2012) ·Zbl 1259.53079 |
[9] | Buryak, A., Shadrin, S., Spitz, L., Zvonkine D.: Integrals of psi-classes over double ramification cycles. Am. J. Math. (to appear) ·Zbl 1342.14054 |
[10] | Carlet G., Dubrovin B., Zhang Y.: The extended Toda hierarchy. Moscow Math. J. 4, 313-332 (2004) ·Zbl 1076.37055 |
[11] | Carlet, G., van de Leur, J.: Hirota equations for the extended bigraded Toda hierarchy and the total descendent potential of \[{\mathbb{C}P^1}\] CP1 orbifolds. J. Phys. A Math. Theor. 46 405205 (2013) ·Zbl 1281.37025 |
[12] | Cavalieri R., Marcus S., Wise J.: Polynomial families of tautological classes on \[{\mathcal{M}_{g, n}^{rt}}Mg\],nrt . J. Pure Appl. Algebra 216(4), 950-981 (2012) ·Zbl 1273.14053 ·doi:10.1016/j.jpaa.2011.10.037 |
[13] | Dubrovin B., Zhang Y.: Virasoro symmetries of the extended Toda hierarchy. Commun. Math. Phys. 250, 161-193 (2004) ·Zbl 1071.37054 ·doi:10.1007/s00220-004-1084-9 |
[14] | Dubrovin, B.A., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. A new 2005 version of arXiv:math/0108160v1, p. 295 ·Zbl 1242.53113 |
[15] | Dubrovin, B.: Gromov-Witten invariants and integrable hierarchies of topological type. arXiv:1312.0799 ·Zbl 1370.53060 |
[16] | Eliashberg, Y.: Symplectic field theory and its applications. International Congress of Mathematicians, vol. I, pp. 217-246. Eur. Math. Soc., Zurich (2007) ·Zbl 1128.53059 |
[17] | Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. 2000, Special Volume, Part II, pp. 560-673 ·Zbl 0989.81114 |
[18] | Faber C., Pandharipande R.: Relative maps and tautological classes. J. Eur. Math. Soc. 7(1), 13-49 (2005) ·Zbl 1084.14054 ·doi:10.4171/JEMS/20 |
[19] | Faber C., Shadrin S., Zvonkine D.: Tautological relations and the r-spin Witten conjecture. Annales Scientifiques de l’École Normale Supérieure (4) 43(4), 621-658 (2010) ·Zbl 1203.53090 |
[20] | Fabert, O., Rossi, P.: String, dilaton, and divisor equation in symplectic field theory. Int. Math. Res. Notices 2011(19), 4384-4404 ·Zbl 1227.53091 |
[21] | Fan H., Jarvis T., Ruan Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. 178(1), 1-106 (2013) ·Zbl 1310.32032 ·doi:10.4007/annals.2013.178.1.1 |
[22] | Goulden I.P., Jackson D.M., Vakil R.: The moduli space of curves, double Hurwitz numbers, and Faber’s intersection number conjecture. Ann. Comb. 15(3), 381-436 (2011) ·Zbl 1236.14031 ·doi:10.1007/s00026-011-0102-9 |
[23] | Graber T., Vakil R.: Relative virtual localization and vanishing of tautological classes on moduli spaces of curves. Duke Math. J. 130(1), 1-37 (2005) ·Zbl 1088.14007 ·doi:10.1215/S0012-7094-05-13011-3 |
[24] | Grushevsky, S., Zakharov, D.: The double ramification cycle and the theta divisor. Proc. Amer. Math. Soc. 142(12), 4053-4064 (2014) ·Zbl 1327.14132 |
[25] | Hain, R.: Normal Functions and the Geometry of Moduli Spaces of Curves. Handbook of Moduli, vol. I, pp. 527-578. Adv. Lect. Math. (ALM), 24, Int. Press, Somerville (2013) ·Zbl 1322.14049 |
[26] | Kazarian M.: KP hierarchy for Hodge integrals. Adv. Math. 221(1), 1-21 (2009) ·Zbl 1168.14006 ·doi:10.1016/j.aim.2008.10.017 |
[27] | Kontsevich M.: Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function. Commun. Math. Phys. 147, 1-23 (1992) ·Zbl 0756.35081 ·doi:10.1007/BF02099526 |
[28] | Kontsevich M., Manin Yu.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164(3), 525-562 (1994) ·Zbl 0853.14020 ·doi:10.1007/BF02101490 |
[29] | Losev A., Manin Y.: New moduli spaces of pointed curves and pencils of flat connections. Michigan Math. J. 48, 443-472 (2000) ·Zbl 1078.14536 ·doi:10.1307/mmj/1030132728 |
[30] | Marcus, S., Wise, J.: Stable maps to rational curves and the relative Jacobian. arXiv:1310.5981 ·Zbl 1310.32032 |
[31] | Milanov, T., Shen, Y., Tseng, H.-H.: Gromov-Witten theory of Fano orbifold curves and ADE-Toda hierarchies. arXiv:1401.5778 ·Zbl 1394.14037 |
[32] | Milanov T., Tseng H.H.: The spaces of Laurent polynomials, \[{\mathbb{P}^1}\] P1 -orbifolds, and integrable hierarchies. J. Reine und Angewandte Math. 622, 189-235 (2008) ·Zbl 1146.53068 |
[33] | Mumford, D.: Towards an Enumerative Geometry of the Moduli Space of Curves. Arithmetic and Geometry, vol. II, pp. 271-328. Progr. Math., 36, Birkhäuser Boston, Boston (1983) ·Zbl 0554.14008 |
[34] | Okounkov A., Pandharipande R.: The equivariant Gromov-Witten theory of \[{\mathbb{P}^1}\] P1. Ann. Math. 163(2), 561-605 (2006) ·Zbl 1105.14077 ·doi:10.4007/annals.2006.163.561 |
[35] | Pandharipande, R., Solomon, J.P., Tessler, R.J.: Intersection theory on moduli of disks, open KdV and Virasoro. arXiv:1409.2191 |
[36] | Rossi, P.: Integrable systems and holomorphic curves. Proceedings of the Gokova Geometry-Topology Conference 2009, pp. 34-57. Int. Press, Somerville (2010) ·Zbl 1207.37049 |
[37] | Shadrin S.: BCOV theory via Givental group action on cohomological field theories. Moscow Math. J. 9(2), 411-429 (2009) ·Zbl 1184.14070 |
[38] | Witten E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Diff. Geom. 1, 243-310 (1991) ·Zbl 0757.53049 ·doi:10.4310/SDG.1990.v1.n1.a5 |
[39] | Witten, E.: Algebraic geometry associated with matrix models of two-dimensional gravity. In: Topological methods in modern mathematics (Stony Brook, NY, 1991), pp. 235-269. Publish or Perish, Houston (1993) ·Zbl 0812.14017 |