[1] | Auslander, M., Isolated singularities and existence of almost split sequences, (Representation Theory, II. Representation Theory, II, Ottawa, Ont., 1984. Representation Theory, II. Representation Theory, II, Ottawa, Ont., 1984, Lecture Notes in Math., vol. 1178 (1986), Springer: Springer Berlin), 194-242 ·Zbl 0633.13007 |
[2] | Auslander, M.; Goldman, O., Maximal orders, Trans. Amer. Math. Soc., 97, 1-24 (1960) ·Zbl 0117.02506 |
[3] | Bridgeland, T., Flops and derived categories, Invent. Math., 147, 3, 613-632 (2002) ·Zbl 1085.14017 |
[4] | Bridgeland, T.; King, A.; Reid, M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., 14, 3, 535-554 (2001) ·Zbl 0966.14028 |
[6] | Burban, I.; Iyama, O.; Keller, B.; Reiten, I., Cluster tilting for one-dimensional hypersurface singularities, Adv. Math., 217, 6, 2443-2484 (2008) ·Zbl 1143.13014 |
[7] | Burban, I.; Kalck, M., Singularity category of a non-commutative resolution of singularities, Adv. Math., 231, 1, 414-435 (2012) ·Zbl 1249.14004 |
[8] | Chen, J.-C., Flops and equivalences of derived categories for threefolds with only terminal Gorenstein singularities, J. Differential Geom., 61, 2, 227-261 (2002) ·Zbl 1090.14003 |
[9] | Chen, X.-W., Unifying two results of Orlov on singularity categories, Abh. Math. Semin. Univ. Hambg., 80, 2, 207-212 (2010) ·Zbl 1214.18013 |
[10] | Curtis, C. W.; Reiner, I., Methods of Representation Theory. Vol. I. With Applications to Finite Groups and Orders (1990), Wiley: Wiley New York, reprint of the 1981 original ·Zbl 0698.20001 |
[11] | Dao, H., Remarks on non-commutative crepant resolutions of complete intersections, Adv. Math., 224, 3, 1021-1030 (2010) ·Zbl 1192.13011 |
[12] | Dao, H., Decent intersection and Tor-rigidity for modules over local hypersurfaces, Trans. Amer. Math. Soc., 365, 6, 2803-2821 (2013) ·Zbl 1285.13018 |
[13] | Dao, H., Picard groups of punctured spectra of dimension three local hypersurfaces are torsion-free, Compos. Math., 148, 1, 145-152 (2012) ·Zbl 1234.14007 |
[14] | Dao, H.; Huneke, C., Vanishing of Ext, cluster tilting modules and finite global dimension of endomorphism rings, Amer. J. Math., 135, 2, 561-578 (2013) ·Zbl 1274.13031 |
[15] | Foxby, H.-B., Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand., 40, 1, 5-19 (1977) ·Zbl 0356.13004 |
[16] | Ginzburg, V., Calabi-Yau algebras |
[17] | Gruson, L.; Raynaud, M., Critères de platitude et de projectivité. Techniques de ‘platification’ d’un module, Invent. Math., 13, 1-89 (1971) ·Zbl 0227.14010 |
[18] | Hartshorne, R., Residues and Duality, Lecture Notes in Math., vol. 20 (1966), Springer-Verlag: Springer-Verlag Berlin, New York, vii+423 pp ·Zbl 0212.26101 |
[19] | Iyama, O.; Reiten, I., Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Amer. J. Math., 130, 4, 1087-1149 (2008) ·Zbl 1162.16007 |
[20] | Iyama, O.; Wemyss, M., Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math. (2014), in press ·Zbl 1308.14007 |
[21] | Iyama, O.; Wemyss, M., Reduction of triangulated categories and Maximal Modification Algebras for \(c A_n\) singularities ·Zbl 1428.18012 |
[22] | Jensen, C. U., On the vanishing of \(\lim_\leftarrow^{(i)}\), J. Algebra, 15, 151-166 (1970) ·Zbl 0199.36202 |
[23] | Jothilingam, P., A note on grade, Nagoya Math. J., 59, 149-152 (1975) ·Zbl 0303.13012 |
[24] | Kawamata, Y., Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2), 127, 1, 93-163 (1988) ·Zbl 0651.14005 |
[25] | Keller, B., On differential graded categories, (International Congress of Mathematicians. Vol. II (2006), Eur. Math. Soc.: Eur. Math. Soc. Zurich), 151-190 ·Zbl 1140.18008 |
[26] | Keller, B.; Murfet, D.; Van den Bergh, M., On two examples by Iyama and Yoshino, Compos. Math., 147, 2, 591-612 (2011) ·Zbl 1264.13016 |
[27] | Kollár, J., Flops, Nagoya Math. J., 113, 15-36 (1989) ·Zbl 0645.14004 |
[28] | Kollár, J.; Mori, S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., vol. 134 (1998), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0926.14003 |
[29] | Lin, H. W., On crepant resolution of some hypersurface singularities and a criterion for UFD, Trans. Amer. Math. Soc., 354, 5, 1861-1868 (2002) ·Zbl 1051.14014 |
[30] | Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxf. Grad. Texts Math., vol. 6 (2002), Oxford Science Publications, Oxford University Press: Oxford Science Publications, Oxford University Press Oxford, xvi+576 pp., translated from French by Reinie Erné ·Zbl 0996.14005 |
[31] | Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 9, 1, 205-236 (1996) ·Zbl 0864.14008 |
[32] | Neeman, A., Triangulated Categories, Ann. of Math. Stud., vol. 148 (2001), Princeton University Press: Princeton University Press Princeton, NJ ·Zbl 0974.18008 |
[33] | Ooishi, A., Matlis duality and the width of a module, Hiroshima Math. J., 6, 573-587 (1976) ·Zbl 0437.13007 |
[34] | Orlov, D., Triangulated categories of singularities and \(D\)-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 3, 246, 227-248 (2004) ·Zbl 1101.81093 |
[35] | Orlov, D., Triangulated categories of singularities and equivalences between Landau-Ginzburg models, Sb. Math., 197, 11-12, 1827-1840 (2006) ·Zbl 1161.14301 |
[36] | Orlov, D., Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math., 226, 1, 206-217 (2011) ·Zbl 1216.18012 |
[37] | Reid, M., Minimal models of canonical 3-folds, (Algebraic Varieties and Analytic Varieties. Algebraic Varieties and Analytic Varieties, Tokyo, 1981. Algebraic Varieties and Analytic Varieties. Algebraic Varieties and Analytic Varieties, Tokyo, 1981, Adv. Stud. Pure Math., vol. 1 (1983), North-Holland: North-Holland Amsterdam), 131-180 ·Zbl 0558.14028 |
[38] | Reid, M., Young person’s guide to canonical singularities, (Algebraic Geometry. Algebraic Geometry, Bowdoin, 1985, Brunswick, Maine, 1985. Algebraic Geometry. Algebraic Geometry, Bowdoin, 1985, Brunswick, Maine, 1985, Proc. Sympos. Pure Math., vol. 46, Part 1 (1987), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 345-414 ·Zbl 0634.14003 |
[39] | Rickard, J., Morita theory for derived categories, J. Lond. Math. Soc. (2), 39, 436-456 (1989) ·Zbl 0642.16034 |
[40] | Rouquier, R.; Zimmermann, A., Picard groups for derived module categories, Proc. Lond. Math. Soc. (3), 87, 1, 197-225 (2003) ·Zbl 1058.18007 |
[41] | Thomason, R. W.; Trobaugh, T., Higher Algebraic K-theory of Schemes and of Derived Categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, 247-435 (1990), Birkhäuser Boston: Birkhäuser Boston Boston, MA |
[42] | Van den Bergh, M., Three-dimensional flops and noncommutative rings, Duke Math. J., 122, 3, 423-455 (2004) ·Zbl 1074.14013 |
[43] | Van den Bergh, M., Non-commutative crepant resolutions, (The Legacy of Niels Henrik Abel (2004), Springer: Springer Berlin), 749-770 ·Zbl 1082.14005 |
[45] | Yoshino, Y., Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser., vol. 146 (1990), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0745.13003 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.