[1] | Tiihonen, Shape optimization and trial methods for free boundary problems, RAIRO–Model. Math. Anal. Numer. 31 pp 805– (1997) ·Zbl 0891.65131 |
[2] | Caffarelli, A Geometric Approach to Free Boundary Problems (2005) |
[3] | Friedman, Free boundary problems in science and technology, Not. AMS 47 pp 854– (2000) ·Zbl 1040.35145 |
[4] | DOI: 10.1007/s10665-012-9608-3 ·Zbl 1359.49014 ·doi:10.1007/s10665-012-9608-3 |
[5] | Crank, Free and Moving Boundary Problems (1984) |
[6] | Flucher, Bernoulli’s free-boundary problem, qualitative theory and numerical approximation, J. Reine Angew. Math. 486 pp 165– (1997) ·Zbl 0909.35154 |
[7] | DOI: 10.1016/j.cma.2008.03.002 ·Zbl 1194.76031 ·doi:10.1016/j.cma.2008.03.002 |
[8] | Eppler, A regularized Newton method in electrical impedance tomography using shape Hessian information, Control Cybern. 34 pp 203– (2005) ·Zbl 1167.49327 |
[9] | DOI: 10.1088/0266-5611/14/1/003 ·Zbl 0894.35123 ·doi:10.1088/0266-5611/14/1/003 |
[11] | Cardaliaguet, Some uniqueness results for Bernoulli interior free-boundary problems in convex domains, Electron. J. Diff. Equ. 2002 pp 1– (2002) ·Zbl 1029.35227 |
[12] | DOI: 10.4171/IFB/213 ·Zbl 1178.49055 ·doi:10.4171/IFB/213 |
[13] | DOI: 10.1023/A:1026095405906 ·Zbl 1077.49030 ·doi:10.1023/A:1026095405906 |
[14] | DOI: 10.1016/0362-546X(95)00192-X ·Zbl 0863.35117 ·doi:10.1016/0362-546X(95)00192-X |
[15] | DOI: 10.1017/S144678870002320X ·doi:10.1017/S144678870002320X |
[16] | DOI: 10.1002/cpa.3160370302 ·Zbl 0586.35089 ·doi:10.1002/cpa.3160370302 |
[17] | DOI: 10.1007/s10589-010-9345-3 ·Zbl 1258.49069 ·doi:10.1007/s10589-010-9345-3 |
[18] | DOI: 10.1155/2013/384320 ·Zbl 1290.49083 ·doi:10.1155/2013/384320 |
[19] | DOI: 10.1016/j.jmaa.2005.03.100 ·Zbl 1088.49028 ·doi:10.1016/j.jmaa.2005.03.100 |
[20] | Bacani, Solving the exterior Bernoulli problem using the shape derivative approach, Mathematics and Computing 2013: Springer Proceedings in Mathematics and Statistics, Vol.91 Volume XXV pp 251– (2014) |
[21] | Bacani, The second-order Eulerian derivative of a shape functional of a free Bernoulli problem, J. Korean Math. Soc. (2014) |
[22] | Sokolowski, Introduction to Shape Optimization (1991) |
[23] | DOI: 10.7151/dmdico.1005 ·Zbl 0961.49024 ·doi:10.7151/dmdico.1005 |
[24] | Delfour, Shapes and Geometries (2001) |
[25] | Haslinger, Introduction to Shape Optimization (Theory, Approximation, and Computation) (2003) ·Zbl 1020.74001 |
[26] | DOI: 10.1137/070687438 ·Zbl 1161.49038 ·doi:10.1137/070687438 |
[27] | Henrot, Variation et Optimisation de Formes (2005) ·Zbl 1098.49001 |
[28] | Murat, Sur le Contrôle par un Domaine Géométrique (1976) |
[29] | DOI: 10.1007/s00028-002-8093-y ·Zbl 1357.49150 ·doi:10.1007/s00028-002-8093-y |
[30] | DOI: 10.1080/01630563.1980.10120631 ·Zbl 0471.35077 ·doi:10.1080/01630563.1980.10120631 |
[31] | DOI: 10.1090/S0025-5718-97-00799-0 ·Zbl 0854.65100 ·doi:10.1090/S0025-5718-97-00799-0 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.