Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

The second-order shape derivative of Kohn-Vogelius-type cost functional using the boundary differentiation approach.(English)Zbl 1321.49073

The article studies a class of two-dimensional boundary value problems of Bernoulli type through shape optimization methods. The cost functional is of Kohn-Vogelius type, and it is minimized over a class of admissible domains subject to two boundary value problems. An analysis of the shape derivatives of the cost functional is carried out. First, the authors introduce necessary tools such as a perturbed domain, a perturbation of identity operator, and the method of mapping. The domain and the boundary transformation formulas, as well as formulas of tangential calculus are provided next. The structure of the second-order Eulerian derivative of a general shape functional is discussed. The discussion is followed by a formal derivation of the second-order shape derivative of the functional which is the authors’ main contribution. The approach used in the computation is based on a method which makes use of the boundary differentiation formula presented in [M. C. Delfour andJ.-P. Zolésio, Shapes and geometries. Analysis, differential calculus, and optimization. Advances in Design and Control 4. Philadelphia, PA: SIAM (2001;Zbl 1002.49029)]. The authors show that the computed shape derivative has a symmetric and a nonsymmetric part, and satisfies a structure theorem. Finally, the second-order Eulerian derivative of the functional at the solution of the Bernoulli problem is discussed and the obtained formulas are compared to an existing result.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49K20 Optimality conditions for problems involving partial differential equations
35R35 Free boundary problems for PDEs
35N25 Overdetermined boundary value problems for PDEs and systems of PDEs

Citations:

Zbl 1002.49029

Cite

References:

[1]Tiihonen, Shape optimization and trial methods for free boundary problems, RAIRO–Model. Math. Anal. Numer. 31 pp 805– (1997) ·Zbl 0891.65131
[2]Caffarelli, A Geometric Approach to Free Boundary Problems (2005)
[3]Friedman, Free boundary problems in science and technology, Not. AMS 47 pp 854– (2000) ·Zbl 1040.35145
[4]DOI: 10.1007/s10665-012-9608-3 ·Zbl 1359.49014 ·doi:10.1007/s10665-012-9608-3
[5]Crank, Free and Moving Boundary Problems (1984)
[6]Flucher, Bernoulli’s free-boundary problem, qualitative theory and numerical approximation, J. Reine Angew. Math. 486 pp 165– (1997) ·Zbl 0909.35154
[7]DOI: 10.1016/j.cma.2008.03.002 ·Zbl 1194.76031 ·doi:10.1016/j.cma.2008.03.002
[8]Eppler, A regularized Newton method in electrical impedance tomography using shape Hessian information, Control Cybern. 34 pp 203– (2005) ·Zbl 1167.49327
[9]DOI: 10.1088/0266-5611/14/1/003 ·Zbl 0894.35123 ·doi:10.1088/0266-5611/14/1/003
[11]Cardaliaguet, Some uniqueness results for Bernoulli interior free-boundary problems in convex domains, Electron. J. Diff. Equ. 2002 pp 1– (2002) ·Zbl 1029.35227
[12]DOI: 10.4171/IFB/213 ·Zbl 1178.49055 ·doi:10.4171/IFB/213
[13]DOI: 10.1023/A:1026095405906 ·Zbl 1077.49030 ·doi:10.1023/A:1026095405906
[14]DOI: 10.1016/0362-546X(95)00192-X ·Zbl 0863.35117 ·doi:10.1016/0362-546X(95)00192-X
[15]DOI: 10.1017/S144678870002320X ·doi:10.1017/S144678870002320X
[16]DOI: 10.1002/cpa.3160370302 ·Zbl 0586.35089 ·doi:10.1002/cpa.3160370302
[17]DOI: 10.1007/s10589-010-9345-3 ·Zbl 1258.49069 ·doi:10.1007/s10589-010-9345-3
[18]DOI: 10.1155/2013/384320 ·Zbl 1290.49083 ·doi:10.1155/2013/384320
[19]DOI: 10.1016/j.jmaa.2005.03.100 ·Zbl 1088.49028 ·doi:10.1016/j.jmaa.2005.03.100
[20]Bacani, Solving the exterior Bernoulli problem using the shape derivative approach, Mathematics and Computing 2013: Springer Proceedings in Mathematics and Statistics, Vol.91 Volume XXV pp 251– (2014)
[21]Bacani, The second-order Eulerian derivative of a shape functional of a free Bernoulli problem, J. Korean Math. Soc. (2014)
[22]Sokolowski, Introduction to Shape Optimization (1991)
[23]DOI: 10.7151/dmdico.1005 ·Zbl 0961.49024 ·doi:10.7151/dmdico.1005
[24]Delfour, Shapes and Geometries (2001)
[25]Haslinger, Introduction to Shape Optimization (Theory, Approximation, and Computation) (2003) ·Zbl 1020.74001
[26]DOI: 10.1137/070687438 ·Zbl 1161.49038 ·doi:10.1137/070687438
[27]Henrot, Variation et Optimisation de Formes (2005) ·Zbl 1098.49001
[28]Murat, Sur le Contrôle par un Domaine Géométrique (1976)
[29]DOI: 10.1007/s00028-002-8093-y ·Zbl 1357.49150 ·doi:10.1007/s00028-002-8093-y
[30]DOI: 10.1080/01630563.1980.10120631 ·Zbl 0471.35077 ·doi:10.1080/01630563.1980.10120631
[31]DOI: 10.1090/S0025-5718-97-00799-0 ·Zbl 0854.65100 ·doi:10.1090/S0025-5718-97-00799-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp