[1] | Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150,013 (2012). doi:10.1142/S0218202511500138 ·Zbl 1242.76342 ·doi:10.1142/S0218202511500138 |
[2] | Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 69(3), 747-761 (2012). doi:10.1002/fld.2611 ·doi:10.1002/fld.2611 |
[3] | Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, vol. 30, pp. 139-165. Annual Reviews, Palo Alto, CA (1998). doi:10.1146/annurev.fluid.30.1.139 ·Zbl 1398.76051 |
[4] | Ausas, R.F., Buscaglia, G.C., Idelsohn, S.R.: A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int. J. Numer. Methods Fluids 70(7), 829-850 (2012). doi:10.1002/fld.2713 ·Zbl 1412.76059 ·doi:10.1002/fld.2713 |
[5] | Bänsch, E.: Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88(2), 203-235 (2001). doi:10.1007/PL00005443 ·Zbl 0985.35060 ·doi:10.1007/PL00005443 |
[6] | Bänsch, E.: Numerical Methods for the Instationary Navier-Stokes Equations with a Free Capillary Surface. University Freiburg, Habilitation (2001) |
[7] | Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441-462 (2007). doi:10.1016/j.jcp.2006.07.026 ·Zbl 1112.65093 ·doi:10.1016/j.jcp.2006.07.026 |
[8] | Barrett, J.W., Garcke, H., Nürnberg, R.: On the parametric finite element approximation of evolving hypersurfaces in \[{\mathbb{R}}^3\] R3. J. Comput. Phys. 227(9), 4281-4307 (2008). doi: 10.1016/j.jcp.2007.11.023 ·Zbl 1145.65068 ·doi:10.1016/j.jcp.2007.11.023 |
[9] | Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229(18), 6270-6299 (2010). doi:10.1016/j.jcp.2010.04.039 ·Zbl 1201.80075 ·doi:10.1016/j.jcp.2010.04.039 |
[10] | Barrett, J.W., Garcke, H., Nürnberg, R.: Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Methods Appl. Mech. Eng. 267, 511-530 (2013). doi:10.1016/j.cma.2013.09.023 ·Zbl 1286.76040 ·doi:10.1016/j.cma.2013.09.023 |
[11] | Barrett, J.W., Garcke, H., Nürnberg, R.: Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs-Thomson law. Adv. Differ. Equ. 18(3-4), 383-432 (2013). http://projecteuclid.org/euclid.ade/1360073021 ·Zbl 1271.80005 |
[12] | Boffi, D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34(2), 664-670 (1997). doi:10.1137/S0036142994270193 ·Zbl 0874.76032 ·doi:10.1137/S0036142994270193 |
[13] | Boffi, D., Cavallini, N., Gardini, F., Gastaldi, L.: Local mass conservation of Stokes finite elements. J. Sci. Comput. 52(2), 383-400 (2012). doi:10.1007/s10915-011-9549-4 ·Zbl 1264.74259 ·doi:10.1007/s10915-011-9549-4 |
[14] | Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991). doi:10.1007/978-1-4612-3172-1 ·Zbl 0788.73002 ·doi:10.1007/978-1-4612-3172-1 |
[15] | Cheng, K.W., Fries, T.P.: XFEM with hanging nodes for two-phase incompressible flow. Comput. Methods Appl. Mech. Eng. 245-246, 290-312 (2012). doi:10.1016/j.cma.2012.07.011 ·Zbl 1354.76099 ·doi:10.1016/j.cma.2012.07.011 |
[16] | Cho, M.H., Choi, H.G., Choi, S.H., Yoo, J.Y.: A Q2Q1 finite element/level-set method for simulating two-phase flows with surface tension. Int. J. Numer. Methods Fluids 70, 468-492 (2012). doi:10.1002/fld.2696 ·Zbl 1412.65136 ·doi:10.1002/fld.2696 |
[17] | Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139-232 (2005). doi:10.1017/S0962492904000224 ·Zbl 1113.65097 ·doi:10.1017/S0962492904000224 |
[18] | Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58(6), 603-611 (1991). doi:10.1007/BF01385643 ·Zbl 0714.65092 ·doi:10.1007/BF01385643 |
[19] | Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005) ·Zbl 1083.76001 |
[20] | Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049-1072 (2006). doi:10.1137/050638333 ·Zbl 1344.76052 ·doi:10.1137/050638333 |
[21] | Ganesan, S.: Finite element methods on moving meshes for free surface and interface flows. Ph.D. thesis, University Magdeburg, Magdeburg, Germany (2006) |
[22] | Ganesan, S., Matthies, G., Tobiska, L.: On spurious velocities in incompressible flow problems with interfaces. Comput. Methods Appl. Mech. Eng. 196(7), 1193-1202 (2007). doi:10.1016/j.cma.2006.08.018 ·Zbl 1173.76338 ·doi:10.1016/j.cma.2006.08.018 |
[23] | Gerbeau, J.F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006). doi:10.1093/acprof:oso/9780198566656.001.0001 ·Zbl 1107.76001 ·doi:10.1093/acprof:oso/9780198566656.001.0001 |
[24] | Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes. Springer, Berlin (1986) ·Zbl 0585.65077 |
[25] | Groß, S., Reusken, A.: An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224(1), 40-58 (2007). doi:10.1016/j.jcp.2006.12.021 ·Zbl 1261.76015 ·doi:10.1016/j.jcp.2006.12.021 |
[26] | Groß, S., Reusken, A.: Numerical Methods for Two-Phase Incompressible Flows, Springer Series in Computational Mathematics, vol. 40. Springer, Berlin (2011) ·Zbl 1222.76002 ·doi:10.1007/978-3-642-19686-7 |
[27] | Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, 708-725 (2014). doi:10.1016/j.jcp.2013.10.028 ·Zbl 1349.76210 ·doi:10.1016/j.jcp.2013.10.028 |
[28] | Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201-225 (1981). doi:10.1016/0021-9991(81)90145-5 ·Zbl 0462.76020 ·doi:10.1016/0021-9991(81)90145-5 |
[29] | Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435-479 (1977). doi:10.1103/RevModPhys.49.435 ·doi:10.1103/RevModPhys.49.435 |
[30] | Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329-349 (1981). doi:10.1016/0045-7825(81)90049-9 ·Zbl 0482.76039 ·doi:10.1016/0045-7825(81)90049-9 |
[31] | Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259-1288 (2009). doi:10.1002/fld.1934 ·Zbl 1273.76276 ·doi:10.1002/fld.1934 |
[32] | Jemison, M., Loch, E., Sussman, M., Shashkov, M., Arienti, M., Ohta, M., Wang, Y.: A coupled level set-moment of fluid method for incompressible two-phase flows. J. Sci. Comput. 54(2-3), 454-491 (2013). doi:10.1007/s10915-012-9614-7 ·Zbl 1352.76091 ·doi:10.1007/s10915-012-9614-7 |
[33] | Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound. 10(1), 15-43 (2008). doi:10.4171/IFB/178 ·Zbl 1144.35043 ·doi:10.4171/IFB/178 |
[34] | LeVeque, R.J., Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18(3), 709-735 (1997). doi:10.1137/S1064827595282532 ·Zbl 0879.76061 ·doi:10.1137/S1064827595282532 |
[35] | Li, Y., Yun, A., Lee, D., Shin, J., Jeong, D., Kim, J.: Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows. Comput. Methods Appl. Mech. Eng. 257, 36-46 (2013). doi:10.1016/j.cma.2013.01.009 ·Zbl 1286.76031 ·doi:10.1016/j.cma.2013.01.009 |
[36] | Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617-2654 (1998). doi:10.1098/rspa.1998.0273 ·Zbl 0927.76007 ·doi:10.1098/rspa.1998.0273 |
[37] | Olshanskii, M.A., Reusken, A.: Analysis of a Stokes interface problem. Numer. Math. 103(1), 129-149 (2006). doi:10.1007/s00211-005-0646-x ·Zbl 1092.65104 ·doi:10.1007/s00211-005-0646-x |
[38] | Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 153. Springer, New York (2003) ·Zbl 1026.76001 ·doi:10.1007/b98879 |
[39] | Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479-517 (2002). doi:10.1017/S0962492902000077 ·Zbl 1123.74309 ·doi:10.1017/S0962492902000077 |
[40] | Pilliod Jr, J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199(2), 465-502 (2004). doi:10.1016/j.jcp.2003.12.023 ·Zbl 1126.76347 ·doi:10.1016/j.jcp.2003.12.023 |
[41] | Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838-5866 (2009). doi:10.1016/j.jcp.2009.04.042 ·Zbl 1280.76020 ·doi:10.1016/j.jcp.2009.04.042 |
[42] | Renardy, Y., Renardy, M.: PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys. 183(2), 400-421 (2002). doi:10.1006/jcph.2002.7190 ·Zbl 1057.76569 ·doi:10.1006/jcph.2002.7190 |
[43] | Scardovelli, R., Zaleski, S.: Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. Int. J. Numer. Methods Fluids 41(3), 251-274 (2003). doi:10.1002/fld.431 ·Zbl 1047.76080 ·doi:10.1002/fld.431 |
[44] | Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005) ·Zbl 1068.65138 |
[45] | Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999) ·Zbl 0973.76003 |
[46] | Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971) ·Zbl 0379.65013 |
[47] | Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447-2471 (2009). doi:10.1137/080732122 ·Zbl 1387.76107 ·doi:10.1137/080732122 |
[48] | Sussman, M., Semereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146-159 (1994). doi:10.1006/jcph.1994.1155 ·Zbl 0808.76077 ·doi:10.1006/jcph.1994.1155 |
[49] | Temam, R.: Navier-Stokes Equations. AMS Chelsea Publishing, Providence (2001) ·Zbl 0981.35001 |
[50] | Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708-759 (2001). doi:10.1006/jcph.2001.6726 ·Zbl 1047.76574 ·doi:10.1006/jcph.2001.6726 |
[51] | Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible multi-fluid flows. J. Comput. Phys. 100(1), 25-37 (1992). doi:10.1016/0021-9991(92)90307-K ·Zbl 0758.76047 ·doi:10.1016/0021-9991(92)90307-K |
[52] | Zahedi, S., Kronbichler, M., Kreiss, G.: Spurious currents in finite element based level set methods for two-phase flow. Int. J. Numer. Methods Fluids 69(9), 1433-1456 (2012). doi:10.1002/fld.2643 ·Zbl 1253.76066 ·doi:10.1002/fld.2643 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.