Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A stable parametric finite element discretization of two-phase Navier-Stokes flow.(English)Zbl 1320.76059

Summary: We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier-Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier-Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be unconditionally stable. We demonstrate the applicability of our method with some numerical results in two and three space dimensions.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76Txx Multiphase and multicomponent flows

Cite

References:

[1]Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150,013 (2012). doi:10.1142/S0218202511500138 ·Zbl 1242.76342 ·doi:10.1142/S0218202511500138
[2]Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 69(3), 747-761 (2012). doi:10.1002/fld.2611 ·doi:10.1002/fld.2611
[3]Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, vol. 30, pp. 139-165. Annual Reviews, Palo Alto, CA (1998). doi:10.1146/annurev.fluid.30.1.139 ·Zbl 1398.76051
[4]Ausas, R.F., Buscaglia, G.C., Idelsohn, S.R.: A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int. J. Numer. Methods Fluids 70(7), 829-850 (2012). doi:10.1002/fld.2713 ·Zbl 1412.76059 ·doi:10.1002/fld.2713
[5]Bänsch, E.: Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88(2), 203-235 (2001). doi:10.1007/PL00005443 ·Zbl 0985.35060 ·doi:10.1007/PL00005443
[6]Bänsch, E.: Numerical Methods for the Instationary Navier-Stokes Equations with a Free Capillary Surface. University Freiburg, Habilitation (2001)
[7]Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441-462 (2007). doi:10.1016/j.jcp.2006.07.026 ·Zbl 1112.65093 ·doi:10.1016/j.jcp.2006.07.026
[8]Barrett, J.W., Garcke, H., Nürnberg, R.: On the parametric finite element approximation of evolving hypersurfaces in \[{\mathbb{R}}^3\] R3. J. Comput. Phys. 227(9), 4281-4307 (2008). doi: 10.1016/j.jcp.2007.11.023 ·Zbl 1145.65068 ·doi:10.1016/j.jcp.2007.11.023
[9]Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229(18), 6270-6299 (2010). doi:10.1016/j.jcp.2010.04.039 ·Zbl 1201.80075 ·doi:10.1016/j.jcp.2010.04.039
[10]Barrett, J.W., Garcke, H., Nürnberg, R.: Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Methods Appl. Mech. Eng. 267, 511-530 (2013). doi:10.1016/j.cma.2013.09.023 ·Zbl 1286.76040 ·doi:10.1016/j.cma.2013.09.023
[11]Barrett, J.W., Garcke, H., Nürnberg, R.: Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs-Thomson law. Adv. Differ. Equ. 18(3-4), 383-432 (2013). http://projecteuclid.org/euclid.ade/1360073021 ·Zbl 1271.80005
[12]Boffi, D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34(2), 664-670 (1997). doi:10.1137/S0036142994270193 ·Zbl 0874.76032 ·doi:10.1137/S0036142994270193
[13]Boffi, D., Cavallini, N., Gardini, F., Gastaldi, L.: Local mass conservation of Stokes finite elements. J. Sci. Comput. 52(2), 383-400 (2012). doi:10.1007/s10915-011-9549-4 ·Zbl 1264.74259 ·doi:10.1007/s10915-011-9549-4
[14]Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991). doi:10.1007/978-1-4612-3172-1 ·Zbl 0788.73002 ·doi:10.1007/978-1-4612-3172-1
[15]Cheng, K.W., Fries, T.P.: XFEM with hanging nodes for two-phase incompressible flow. Comput. Methods Appl. Mech. Eng. 245-246, 290-312 (2012). doi:10.1016/j.cma.2012.07.011 ·Zbl 1354.76099 ·doi:10.1016/j.cma.2012.07.011
[16]Cho, M.H., Choi, H.G., Choi, S.H., Yoo, J.Y.: A Q2Q1 finite element/level-set method for simulating two-phase flows with surface tension. Int. J. Numer. Methods Fluids 70, 468-492 (2012). doi:10.1002/fld.2696 ·Zbl 1412.65136 ·doi:10.1002/fld.2696
[17]Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139-232 (2005). doi:10.1017/S0962492904000224 ·Zbl 1113.65097 ·doi:10.1017/S0962492904000224
[18]Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58(6), 603-611 (1991). doi:10.1007/BF01385643 ·Zbl 0714.65092 ·doi:10.1007/BF01385643
[19]Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005) ·Zbl 1083.76001
[20]Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049-1072 (2006). doi:10.1137/050638333 ·Zbl 1344.76052 ·doi:10.1137/050638333
[21]Ganesan, S.: Finite element methods on moving meshes for free surface and interface flows. Ph.D. thesis, University Magdeburg, Magdeburg, Germany (2006)
[22]Ganesan, S., Matthies, G., Tobiska, L.: On spurious velocities in incompressible flow problems with interfaces. Comput. Methods Appl. Mech. Eng. 196(7), 1193-1202 (2007). doi:10.1016/j.cma.2006.08.018 ·Zbl 1173.76338 ·doi:10.1016/j.cma.2006.08.018
[23]Gerbeau, J.F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006). doi:10.1093/acprof:oso/9780198566656.001.0001 ·Zbl 1107.76001 ·doi:10.1093/acprof:oso/9780198566656.001.0001
[24]Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes. Springer, Berlin (1986) ·Zbl 0585.65077
[25]Groß, S., Reusken, A.: An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224(1), 40-58 (2007). doi:10.1016/j.jcp.2006.12.021 ·Zbl 1261.76015 ·doi:10.1016/j.jcp.2006.12.021
[26]Groß, S., Reusken, A.: Numerical Methods for Two-Phase Incompressible Flows, Springer Series in Computational Mathematics, vol. 40. Springer, Berlin (2011) ·Zbl 1222.76002 ·doi:10.1007/978-3-642-19686-7
[27]Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, 708-725 (2014). doi:10.1016/j.jcp.2013.10.028 ·Zbl 1349.76210 ·doi:10.1016/j.jcp.2013.10.028
[28]Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201-225 (1981). doi:10.1016/0021-9991(81)90145-5 ·Zbl 0462.76020 ·doi:10.1016/0021-9991(81)90145-5
[29]Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435-479 (1977). doi:10.1103/RevModPhys.49.435 ·doi:10.1103/RevModPhys.49.435
[30]Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329-349 (1981). doi:10.1016/0045-7825(81)90049-9 ·Zbl 0482.76039 ·doi:10.1016/0045-7825(81)90049-9
[31]Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259-1288 (2009). doi:10.1002/fld.1934 ·Zbl 1273.76276 ·doi:10.1002/fld.1934
[32]Jemison, M., Loch, E., Sussman, M., Shashkov, M., Arienti, M., Ohta, M., Wang, Y.: A coupled level set-moment of fluid method for incompressible two-phase flows. J. Sci. Comput. 54(2-3), 454-491 (2013). doi:10.1007/s10915-012-9614-7 ·Zbl 1352.76091 ·doi:10.1007/s10915-012-9614-7
[33]Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound. 10(1), 15-43 (2008). doi:10.4171/IFB/178 ·Zbl 1144.35043 ·doi:10.4171/IFB/178
[34]LeVeque, R.J., Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18(3), 709-735 (1997). doi:10.1137/S1064827595282532 ·Zbl 0879.76061 ·doi:10.1137/S1064827595282532
[35]Li, Y., Yun, A., Lee, D., Shin, J., Jeong, D., Kim, J.: Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows. Comput. Methods Appl. Mech. Eng. 257, 36-46 (2013). doi:10.1016/j.cma.2013.01.009 ·Zbl 1286.76031 ·doi:10.1016/j.cma.2013.01.009
[36]Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617-2654 (1998). doi:10.1098/rspa.1998.0273 ·Zbl 0927.76007 ·doi:10.1098/rspa.1998.0273
[37]Olshanskii, M.A., Reusken, A.: Analysis of a Stokes interface problem. Numer. Math. 103(1), 129-149 (2006). doi:10.1007/s00211-005-0646-x ·Zbl 1092.65104 ·doi:10.1007/s00211-005-0646-x
[38]Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 153. Springer, New York (2003) ·Zbl 1026.76001 ·doi:10.1007/b98879
[39]Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479-517 (2002). doi:10.1017/S0962492902000077 ·Zbl 1123.74309 ·doi:10.1017/S0962492902000077
[40]Pilliod Jr, J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199(2), 465-502 (2004). doi:10.1016/j.jcp.2003.12.023 ·Zbl 1126.76347 ·doi:10.1016/j.jcp.2003.12.023
[41]Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838-5866 (2009). doi:10.1016/j.jcp.2009.04.042 ·Zbl 1280.76020 ·doi:10.1016/j.jcp.2009.04.042
[42]Renardy, Y., Renardy, M.: PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys. 183(2), 400-421 (2002). doi:10.1006/jcph.2002.7190 ·Zbl 1057.76569 ·doi:10.1006/jcph.2002.7190
[43]Scardovelli, R., Zaleski, S.: Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. Int. J. Numer. Methods Fluids 41(3), 251-274 (2003). doi:10.1002/fld.431 ·Zbl 1047.76080 ·doi:10.1002/fld.431
[44]Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005) ·Zbl 1068.65138
[45]Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999) ·Zbl 0973.76003
[46]Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971) ·Zbl 0379.65013
[47]Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447-2471 (2009). doi:10.1137/080732122 ·Zbl 1387.76107 ·doi:10.1137/080732122
[48]Sussman, M., Semereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146-159 (1994). doi:10.1006/jcph.1994.1155 ·Zbl 0808.76077 ·doi:10.1006/jcph.1994.1155
[49]Temam, R.: Navier-Stokes Equations. AMS Chelsea Publishing, Providence (2001) ·Zbl 0981.35001
[50]Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708-759 (2001). doi:10.1006/jcph.2001.6726 ·Zbl 1047.76574 ·doi:10.1006/jcph.2001.6726
[51]Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible multi-fluid flows. J. Comput. Phys. 100(1), 25-37 (1992). doi:10.1016/0021-9991(92)90307-K ·Zbl 0758.76047 ·doi:10.1016/0021-9991(92)90307-K
[52]Zahedi, S., Kronbichler, M., Kreiss, G.: Spurious currents in finite element based level set methods for two-phase flow. Int. J. Numer. Methods Fluids 69(9), 1433-1456 (2012). doi:10.1002/fld.2643 ·Zbl 1253.76066 ·doi:10.1002/fld.2643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp