Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Exact Poisson pencils, \(\tau \)-structures and topological hierarchies.(English)Zbl 1318.53102

Summary: We discuss, in the framework of the Dubrovin-Zhang perturbative approach to integrable evolutionary PDEs in \(1+1\) dimensions, the role of a special class of Poisson pencils, called exact Poisson pencils. In particular we show that, in the semisimple case, exactness of the pencil is equivalent to the constancy of the so-called “central invariants” of the theory that were introduced by Dubrovin, Liu and Zhang.

MSC:

53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds

Cite

References:

[1]Dubrovin, B.; Zhang, Y., Normal forms of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants
[2]Liu, S. Q.; Zhang, Y., Deformations of semisimple bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 54, 4, 427-453 (2005) ·Zbl 1079.37058
[3]Dubrovin, B.; Liu, S. Q.; Zhang, Y., Hamiltonian peturbations of hyperbolic systems of conservation laws I. Quasi-triviality of bi-Hamiltonian perturbations, Comm. Pure Appl. Math., 59, 4, 559-615 (2006) ·Zbl 1108.35112
[4]Dubrovin, B.; Liu, S. Q.; Zhang, Y., Frobenius manifolds and central invariants for the Drinfeld-Sokolov bi-Hamiltonian structures, Adv. Math., 219, 3, 780-837 (2008) ·Zbl 1153.37032
[5]Buryak, A.; Posthuma, H.; Shadrin, S., A polynomial bracket for Dubrovin-Zhang hierarchies ·Zbl 1259.53079
[6]Lorenzoni, P., Deformations of bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 44, 331-375 (2002) ·Zbl 1010.37041
[7]Dubrovin, B., Hamiltonian peturbations of hyperbolic systems of conservation laws II, Comm. Math. Phys., 267, 1, 117-139 (2006) ·Zbl 1109.35070
[8]Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192-1194 (1972) ·Zbl 1168.35423
[9]Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations, (Jimbo, M.; Miwa, T., Proceedings of RIMS Symposium on Nonlinear Integrable Systems-Classical Theory and Quantum Theory (1983), World Scientific: World Scientific Singapore), 39-119 ·Zbl 0571.35099
[10]Sato, M.; Sato, Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, (Lax, P.; Fujita, H., Nonlinear PDEs in Applied Sciences. Nonlinear PDEs in Applied Sciences, US-Japan Seminar, Tokyo (1982), North-Holland: North-Holland Amsterdam), 259-271 ·Zbl 0528.58020
[11]Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., 147, 1-23 (1992) ·Zbl 0756.35081
[12]Witten, E., Two-dimensional gravity and intersection theory on moduli space, Surv. Differ. Geom., 1, 243-310 (1991) ·Zbl 0757.53049
[13]Magri, F., A simple construction of integrable systems, J. Math. Phys., 19, 1156-1162 (1978) ·Zbl 0383.35065
[14]Zubelli, J. P.; Magri, F., Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV, Comm. Math. Phys., 141, 2, 329-351 (1991) ·Zbl 0743.35072
[15]Gel’fand, I. M.; Zakharevich, I., On the local geometry of a bi-Hamiltonian structure, (Gel’fand Seminar, vol. 1990-92 (1993), Birkhauser), Available online at: http://math.berkeley.edu/ ilya/papers/bihamiltonian_1993/res_web.pdf ·Zbl 0711.34099
[16]Manakov, S. V., Note on the integration of Euler’s equations of the dynamics of an \(n\)-dimensional rigid body, Funct. Anal. Appl., 4, 328-329 (1976) ·Zbl 0358.70004
[17]Fuchssteiner, B., Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Progr. Theoret. Phys., 70, 1508-1522 (1983) ·Zbl 1098.37536
[18]Olver, P., (Applications of Lie Groups to Differential Equations. Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107 (1986), Springer-Verlag: Springer-Verlag New York) ·Zbl 0588.22001
[19]Adler, M.; van Moerbeke, P., Compatible Poisson structures and the Virasoro algebra, Comm. Pure Appl. Math., 47, 1, 5-37 (1994) ·Zbl 0801.58014
[20]van Moerbeke, P., Integrable foundations of string theory, (Lectures on Integrable Systems (Sophia-Antipolis, 1991) (1994), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 163-267 ·Zbl 0850.81049
[21]Dickey, L. A., Soliton Equations and Hamiltonian Systems (1991), World Scientific: World Scientific Singapore ·Zbl 0753.35075
[22]Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems (2003), Cambridge University Press ·Zbl 1045.37033
[23]Falqui, G.; Magri, F.; Pedroni, M., bi-Hamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy, Comm. Math. Phys., 197, 2, 303-324 (1998) ·Zbl 0926.37017
[24]P. Casati, G. Falqui, F. Magri, M. Pedroni, The KP theory revisited IV, Preprints SISSA/2 5/96/FM. Available online at: http://www.matapp.unimib.it/ falqui/oldpub/misc.html; P. Casati, G. Falqui, F. Magri, M. Pedroni, The KP theory revisited IV, Preprints SISSA/2 5/96/FM. Available online at: http://www.matapp.unimib.it/ falqui/oldpub/misc.html ·Zbl 0889.58042
[25]Dubrovin, B.; Novikov, S. P., On Poisson brackets of hydrodynamic type, Sov. Math. Dokl., 279, 2, 294-297 (1984) ·Zbl 0591.58012
[26]Dubrovin, B., Flat pencils of metrics and Frobenius manifolds, (Saito, M.-H.; Shimizu, Y.; Ueno, K., Proceedings of 1997 Taniguchi Symposium, Integrable Systems and Algebraic Geometry (1998), World Scientific), 47-72 ·Zbl 0963.53054
[27]Ferapontov, E. V., Compatible Poisson brackets of hydrodynamic type, J. Phys. A, 34, 2377-2388 (2001) ·Zbl 1010.37044
[28]Saito, K.; Yano, T.; Sekeguchi, J., On a certain generator system of the ring of invariants of a finite reflection group, Comm. Algebra, 8, 373-408 (1980) ·Zbl 0428.14020
[29]Arsie, A.; Lorenzoni, P., On bi-Hamiltonian deformations of exact pencils of hydrodynamic type, J. Phys. A: Math. Theoret., 44 (2011) ·Zbl 1317.37066
[30]Falqui, G., On a Camassa-Holm type equation with two dependent variables, J. Phys. A, 39, 2, 327-342 (2006) ·Zbl 1084.37053
[31]Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associeés, J. Differential Geom., 12, 253-300 (1977) ·Zbl 0405.53024
[32]Getzler, E., A Darboux theorem for Hamiltonian operators in the formal calculus of variations, Duke Math. J., 111, 535-560 (2002) ·Zbl 1100.32008
[33]Degiovanni, L.; Magri, F.; Sciacca, V., On deformation of Poisson manifolds of hydrodynamic type, Comm. Math. Phys., 253, 1, 1-24 (2005) ·Zbl 1108.53044
[34]Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) ·Zbl 0972.35521
[35]Chen, M.; Liu, S.-Q.; Zhang, Y., A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75, 1-15 (2006) ·Zbl 1105.35102
[36]Martínez Alonso, L., Schrödinger spectral problems with energy-dependent potentials as sources of nonlinear Hamiltonian evolution equations, J. Math. Phys., 21, 2342-2349 (1980) ·Zbl 0455.35111
[37]Antonowicz, M.; Fordy, A. P., Coupled KdV equations with multi-Hamiltonian structures, Physica D, 28, 345-357 (1987) ·Zbl 0638.35079
[38]Antonowicz, M.; Fordy, A. P., Coupled Harry Dym equations with multi-Hamiltonian structures, J. Phys. A, 21, 269-275 (1988) ·Zbl 0673.35088
[39]Chen, M.; Liu, S. Q.; Zhang, Y., Hamiltonian structures and their reciprocal transformations for the \(r\)-KdV-CH hierarchy, J. Geom. Phys., 59, 9, 1227-1243 (2009) ·Zbl 1172.37318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp