[1] | Dubrovin, B.; Zhang, Y., Normal forms of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants |
[2] | Liu, S. Q.; Zhang, Y., Deformations of semisimple bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 54, 4, 427-453 (2005) ·Zbl 1079.37058 |
[3] | Dubrovin, B.; Liu, S. Q.; Zhang, Y., Hamiltonian peturbations of hyperbolic systems of conservation laws I. Quasi-triviality of bi-Hamiltonian perturbations, Comm. Pure Appl. Math., 59, 4, 559-615 (2006) ·Zbl 1108.35112 |
[4] | Dubrovin, B.; Liu, S. Q.; Zhang, Y., Frobenius manifolds and central invariants for the Drinfeld-Sokolov bi-Hamiltonian structures, Adv. Math., 219, 3, 780-837 (2008) ·Zbl 1153.37032 |
[5] | Buryak, A.; Posthuma, H.; Shadrin, S., A polynomial bracket for Dubrovin-Zhang hierarchies ·Zbl 1259.53079 |
[6] | Lorenzoni, P., Deformations of bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 44, 331-375 (2002) ·Zbl 1010.37041 |
[7] | Dubrovin, B., Hamiltonian peturbations of hyperbolic systems of conservation laws II, Comm. Math. Phys., 267, 1, 117-139 (2006) ·Zbl 1109.35070 |
[8] | Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192-1194 (1972) ·Zbl 1168.35423 |
[9] | Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations, (Jimbo, M.; Miwa, T., Proceedings of RIMS Symposium on Nonlinear Integrable Systems-Classical Theory and Quantum Theory (1983), World Scientific: World Scientific Singapore), 39-119 ·Zbl 0571.35099 |
[10] | Sato, M.; Sato, Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, (Lax, P.; Fujita, H., Nonlinear PDEs in Applied Sciences. Nonlinear PDEs in Applied Sciences, US-Japan Seminar, Tokyo (1982), North-Holland: North-Holland Amsterdam), 259-271 ·Zbl 0528.58020 |
[11] | Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., 147, 1-23 (1992) ·Zbl 0756.35081 |
[12] | Witten, E., Two-dimensional gravity and intersection theory on moduli space, Surv. Differ. Geom., 1, 243-310 (1991) ·Zbl 0757.53049 |
[13] | Magri, F., A simple construction of integrable systems, J. Math. Phys., 19, 1156-1162 (1978) ·Zbl 0383.35065 |
[14] | Zubelli, J. P.; Magri, F., Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV, Comm. Math. Phys., 141, 2, 329-351 (1991) ·Zbl 0743.35072 |
[15] | Gel’fand, I. M.; Zakharevich, I., On the local geometry of a bi-Hamiltonian structure, (Gel’fand Seminar, vol. 1990-92 (1993), Birkhauser), Available online at: http://math.berkeley.edu/ ilya/papers/bihamiltonian_1993/res_web.pdf ·Zbl 0711.34099 |
[16] | Manakov, S. V., Note on the integration of Euler’s equations of the dynamics of an \(n\)-dimensional rigid body, Funct. Anal. Appl., 4, 328-329 (1976) ·Zbl 0358.70004 |
[17] | Fuchssteiner, B., Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Progr. Theoret. Phys., 70, 1508-1522 (1983) ·Zbl 1098.37536 |
[18] | Olver, P., (Applications of Lie Groups to Differential Equations. Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107 (1986), Springer-Verlag: Springer-Verlag New York) ·Zbl 0588.22001 |
[19] | Adler, M.; van Moerbeke, P., Compatible Poisson structures and the Virasoro algebra, Comm. Pure Appl. Math., 47, 1, 5-37 (1994) ·Zbl 0801.58014 |
[20] | van Moerbeke, P., Integrable foundations of string theory, (Lectures on Integrable Systems (Sophia-Antipolis, 1991) (1994), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 163-267 ·Zbl 0850.81049 |
[21] | Dickey, L. A., Soliton Equations and Hamiltonian Systems (1991), World Scientific: World Scientific Singapore ·Zbl 0753.35075 |
[22] | Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems (2003), Cambridge University Press ·Zbl 1045.37033 |
[23] | Falqui, G.; Magri, F.; Pedroni, M., bi-Hamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy, Comm. Math. Phys., 197, 2, 303-324 (1998) ·Zbl 0926.37017 |
[24] | P. Casati, G. Falqui, F. Magri, M. Pedroni, The KP theory revisited IV, Preprints SISSA/2 5/96/FM. Available online at: http://www.matapp.unimib.it/ falqui/oldpub/misc.html; P. Casati, G. Falqui, F. Magri, M. Pedroni, The KP theory revisited IV, Preprints SISSA/2 5/96/FM. Available online at: http://www.matapp.unimib.it/ falqui/oldpub/misc.html ·Zbl 0889.58042 |
[25] | Dubrovin, B.; Novikov, S. P., On Poisson brackets of hydrodynamic type, Sov. Math. Dokl., 279, 2, 294-297 (1984) ·Zbl 0591.58012 |
[26] | Dubrovin, B., Flat pencils of metrics and Frobenius manifolds, (Saito, M.-H.; Shimizu, Y.; Ueno, K., Proceedings of 1997 Taniguchi Symposium, Integrable Systems and Algebraic Geometry (1998), World Scientific), 47-72 ·Zbl 0963.53054 |
[27] | Ferapontov, E. V., Compatible Poisson brackets of hydrodynamic type, J. Phys. A, 34, 2377-2388 (2001) ·Zbl 1010.37044 |
[28] | Saito, K.; Yano, T.; Sekeguchi, J., On a certain generator system of the ring of invariants of a finite reflection group, Comm. Algebra, 8, 373-408 (1980) ·Zbl 0428.14020 |
[29] | Arsie, A.; Lorenzoni, P., On bi-Hamiltonian deformations of exact pencils of hydrodynamic type, J. Phys. A: Math. Theoret., 44 (2011) ·Zbl 1317.37066 |
[30] | Falqui, G., On a Camassa-Holm type equation with two dependent variables, J. Phys. A, 39, 2, 327-342 (2006) ·Zbl 1084.37053 |
[31] | Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associeés, J. Differential Geom., 12, 253-300 (1977) ·Zbl 0405.53024 |
[32] | Getzler, E., A Darboux theorem for Hamiltonian operators in the formal calculus of variations, Duke Math. J., 111, 535-560 (2002) ·Zbl 1100.32008 |
[33] | Degiovanni, L.; Magri, F.; Sciacca, V., On deformation of Poisson manifolds of hydrodynamic type, Comm. Math. Phys., 253, 1, 1-24 (2005) ·Zbl 1108.53044 |
[34] | Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) ·Zbl 0972.35521 |
[35] | Chen, M.; Liu, S.-Q.; Zhang, Y., A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75, 1-15 (2006) ·Zbl 1105.35102 |
[36] | Martínez Alonso, L., Schrödinger spectral problems with energy-dependent potentials as sources of nonlinear Hamiltonian evolution equations, J. Math. Phys., 21, 2342-2349 (1980) ·Zbl 0455.35111 |
[37] | Antonowicz, M.; Fordy, A. P., Coupled KdV equations with multi-Hamiltonian structures, Physica D, 28, 345-357 (1987) ·Zbl 0638.35079 |
[38] | Antonowicz, M.; Fordy, A. P., Coupled Harry Dym equations with multi-Hamiltonian structures, J. Phys. A, 21, 269-275 (1988) ·Zbl 0673.35088 |
[39] | Chen, M.; Liu, S. Q.; Zhang, Y., Hamiltonian structures and their reciprocal transformations for the \(r\)-KdV-CH hierarchy, J. Geom. Phys., 59, 9, 1227-1243 (2009) ·Zbl 1172.37318 |