Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu\)-transmission pseudodifferential operators.(English)Zbl 1318.47064

Essentially, the article deals with a suitable pseudifferentiable operators which are Fredholm. Accordingly, relative to an open bounded smooth subset \(\Omega\) of a paracompact set, the author provides the definition of a pseudo-differential operator satisfying the \(\mu\)-transmission property, i.e., in local coordinates the symbol has the asymptotic expansion \(\sum_{j\geq0}\mathfrak{p}_j(x,\xi)\) such that the derivatives of \(\mathfrak{p}_j(x,\xi)\) at \((x,\xi)\in\partial \Omega\times\{\pm N\}\) satisfy meaningful conditions, where \(N\) stands for the interior normal vector at \(x\in \partial \Omega\), the boundary of \(\Omega\).
The Introduction states the main results. By recalling the definition of Hörmander’s \(\mu(s)\)-space, \(H^{\mu(s)}_p(\overline{\Omega})\), an explicit subspace of \(\bigcup_{\varepsilon>0} \dot{H}^{\mathrm{Re}(\mu)+1/p-1+\varepsilon}(\overline{\Omega})\), where the elements of this union are the \(p\)-Bessel potential spaces, the author considers the factorization index \(\mu_0\) (a particular value of \(\mu\in \mathbb C\)), an elliptic operator \(P\) of order \(m\in \mathbb C\), and \(r_\Omega\) the smooth distance function restricted to \(\Omega\). He shows that \(r_\Omega P\) is a Fredholm operator from \(H^{\mu_0(s)}_p(\overline{\Omega})\) to \(\overline{H}_p^{s-\mathrm{Re}(m)}(\Omega)\), a space homeomorphic to a quotient space (Theorem 2). Then, by considering \(\mu=\mu_0-M\) such that \(M>0\), the author states that the vector operator \(\big(r_\Omega P, \gamma_{\mu,j}\big)_{0\leq j\leq M-1}\) is Fredholm from \(H_p^{\mu(s)}(\overline{\Omega})\) to the product of \(\overline{H}_p^{s-\mathrm{Re}(m)}(\Omega)\) times a finite number of Besov spaces on \(\partial{\Omega}\) (Theorem 3).
In the first section, the author recalls the properties of the Bessel potentials, Besov and anisotropic spaces, and also recalls a theorem on homomorphisms between \(\dot{H}_p^s(\overline{\Omega})\) and \(\dot{H}_p^{s-\mathrm{Re}(\mu)}(\overline{\Omega})\) spaces of Besov-potential functions with compact support in \(\overline{\Omega}\) (Theorem 1.3).
The second section focuses on giving a necessary and sufficient condition for a pseudo-differential operator to satisfy the property of \(\mu\)-transmission (Theorem 2.6). The third section carries over the known result that, if \(P\), an elliptic operator of order \(m\in \mathbb C\), checking the \(\mu_0\)-transmission condition just for the principal symbol of \(P\), then the operator \(r_\Omega P\) is Fredholm from \(\dot{H}^s_p(\overline{\Omega})\) to \(\overline{H}^{s-\mathrm{Re}(\mu)}_p(\overline{\Omega})\) (Theorem 3.1), and deduces an embedding anisotropic theorem (Theorem 3.3).
Now, we describe one by one the results of the fourth section. Proposition 4.1 deals with the relation between \(H^{\mu(s)}_p\) and \(\mathcal{E}_\mu\), the space of distributions (Definition 2.1). Theorem 4.2 states a continuous embedding theorem from \(H^{\mu(s)}_p\) into \(\overline{H}_p^{s-\mathrm{Re}(m) }\). Theorem 4.4 states that \(r_\Omega P\) is a Fredholm operator from \(H^{\mu_0(s)}_p(\overline{\Omega})\) to \(\overline{H}^{s-\mathrm{Re}(m)}_p({\Omega})\); furthermore, this operator has a an explicit parametrix and, by using a completion argument, this theorem remains true on the set of smooth functions on \(\overline{\Omega}\).
The fifth section focuses on the properties of Hörmander spaces and their boundary values; precisely, by unfolding an element of \(\mathcal{E}_\mu\) in terms of power functions comprised by the quotient of the distance function and the gamma function, the author shows the continuity of a map on the Hörmander space on \(\overline{\Omega}\) and with values the finite product of Besov-spaces over \(\partial\Omega\). Besides, this map has an explicit null space (Theorem 5.1). Then, by using Boutet de Monvel calculus, the author provides a version of the last theorem for the case of the upper half-space (Theorem 5.4).
The sixth and the seventh sections focus on inhomogeneous boundary value problems and on a few applications for the fractional Laplace-Beltrami operator, respectively.

MSC:

47G30 Pseudodifferential operators
35R11 Fractional partial differential equations
35S05 Pseudodifferential operators as generalizations of partial differential operators
58J40 Pseudodifferential and Fourier integral operators on manifolds

Cite

References:

[1]Albin, P.; Melrose, R. B., Fredholm realizations of elliptic symbols on manifolds with boundary, J. Reine Angew. Math., 627, 155-181 (2009) ·Zbl 1161.58011
[2]Bogdan, K.; Grzywny, T.; Ryznar, M., Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38, 1901-1923 (2010) ·Zbl 1204.60074
[3]Boutet de Monvel, L., Opérateurs pseudo-différentiels elliptiques et problémes aux limites, Ann. Inst. Fourier (Grenoble), 19, 169-268 (1969) ·Zbl 0176.08703
[4]Boutet de Monvel, L., Boundary problems for pseudo-differential operators, Acta Math., 126, 11-51 (1971) ·Zbl 0206.39401
[5]Boutet de Monvel, L., Lacunas and Transmissions, Ann. of Math. Stud., vol. 91, 209-218 (1979), Princeton ·Zbl 0445.35008
[6]Chkadua, O.; Duduchava, R., Pseudodifferential equations on manifolds with boundary: Fredholm property and asymptotics, Math. Nachr., 222, 79-139 (2001) ·Zbl 0985.47019
[7]Eskin, G., Boundary Value Problems for Elliptic Pseudodifferential Equations (1981), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 0458.35002
[8]Frank, R.; Geisinger, L., Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math. (2014), in press ·Zbl 1337.35163
[9]Franke, J., Elliptische Randwertprobleme in Besov-Triebel-Lizorkin-Raümen (1986), Friedrich-Schiller-Universität Jena, Dissertation
[10]Gonzalez, M.; Mazzeo, R.; Sire, Y., Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22, 845-863 (2012) ·Zbl 1255.53037
[11]Grubb, G., Pseudo-differential boundary problems in \(L_p\)-spaces, Comm. Partial Differential Equations, 13, 289-340 (1990) ·Zbl 0723.35091
[12]Grubb, G., Functional Calculus of Pseudodifferential Boundary Problems, Progr. Math., vol. 65 (1996), Birkhäuser: Birkhäuser Boston, first edition issued 1986 ·Zbl 0844.35002
[13]Grubb, G., Distributions and Operators, Grad. Texts in Math., vol. 252 (2009), Springer: Springer New York ·Zbl 1171.47001
[14]Grubb, G.; Hörmander, L., The transmission property, Math. Scand., 67, 273-289 (1990) ·Zbl 0766.35088
[15]Grubb, G.; Kokholm, N. J., A global calculus of parameter-dependent pseudodifferential boundary problems in \(L_p\) Sobolev spaces, Acta Math., 171, 165-229 (1993) ·Zbl 0811.35176
[16]Harutyunyan, G.; Schulze, B.-W., Elliptic Mixed, Transmission and Singular Crack Problems, EMS Tracts Math., vol. 4 (2008), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich ·Zbl 1141.35001
[17]Hirschowitz, A.; Piriou, A., Propriétés de transmission pour les distributions intégrales de Fourier, Comm. Partial Differential Equations, 4, 113-217 (1979) ·Zbl 0456.58028
[18]Hörmander, L., Linear Partial Differential Operators (1963), Springer ·Zbl 0171.06802
[20]Hörmander, L., The Analysis of Linear Partial Differential Operators, I (1983), Springer Verlag: Springer Verlag Berlin, New York ·Zbl 0521.35001
[21]Hörmander, L., The Analysis of Linear Partial Differential Operators, III (1985), Springer Verlag: Springer Verlag Berlin, New York ·Zbl 0601.35001
[22]Melrose, R. B., The Atiyah-Patodi-Singer Index Theorem (1993), A.K. Peters: A.K. Peters Wellesley, MA ·Zbl 0796.58050
[23]Rempel, S.; Schulze, B.-W., Complex powers for pseudo-differential boundary problems II, Math. Nachr., 116, 269-314 (1984) ·Zbl 0585.58041
[24]Roitberg, Y., Elliptic Boundary Value Problems in the Spaces of Distributions, Math. Appl., vol. 384 (1996), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht, 415 pp ·Zbl 0862.35002
[25]Roitberg, Y. A.; Sheftel, V., A homeomorphism theorem for elliptic systems and its applications, Mat. Sb., 78, 446-472 (1969) ·Zbl 0176.40901
[26]Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian, J. Math. Pures Appl., 101, 275-302 (2014) ·Zbl 1285.35020
[27]Seeley, R. T., Complex powers of an elliptic operator, (Proc. Sympos. Pure Math., vol. 10 (1967), Amer. Math. Soc.), 288-307 ·Zbl 0159.15504
[28]Shargorodsky, E., An \(L_p\)-analogue of the Vishik-Eskin theory, Mem. Differential Equations Math. Phys., 2, 41-146 (1994), Math. Inst. Georgian Acad. Sci., Tbilisi ·Zbl 0852.35150
[29]Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1995), J.A. Barth: J.A. Barth Leipzig ·Zbl 0830.46028
[30]Vishik, M. I.; Eskin, G. I., Convolution equations in a bounded region, Uspekhi Mat. Nauk. Uspekhi Mat. Nauk, Russian Math. Surveys, 20, 86-151 (1965), English translation in: ·Zbl 0152.34202
[31]Vishik, M. I.; Eskin, G. I., Convolution equations of variable order, Tr. Mosk. Mat. Obs.. Tr. Mosk. Mat. Obs., Trans. Moscow Math. Soc., 16, 27-52 (1967), English translation in: ·Zbl 0194.42705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp