[1] | Albin, P.; Melrose, R. B., Fredholm realizations of elliptic symbols on manifolds with boundary, J. Reine Angew. Math., 627, 155-181 (2009) ·Zbl 1161.58011 |
[2] | Bogdan, K.; Grzywny, T.; Ryznar, M., Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38, 1901-1923 (2010) ·Zbl 1204.60074 |
[3] | Boutet de Monvel, L., Opérateurs pseudo-différentiels elliptiques et problémes aux limites, Ann. Inst. Fourier (Grenoble), 19, 169-268 (1969) ·Zbl 0176.08703 |
[4] | Boutet de Monvel, L., Boundary problems for pseudo-differential operators, Acta Math., 126, 11-51 (1971) ·Zbl 0206.39401 |
[5] | Boutet de Monvel, L., Lacunas and Transmissions, Ann. of Math. Stud., vol. 91, 209-218 (1979), Princeton ·Zbl 0445.35008 |
[6] | Chkadua, O.; Duduchava, R., Pseudodifferential equations on manifolds with boundary: Fredholm property and asymptotics, Math. Nachr., 222, 79-139 (2001) ·Zbl 0985.47019 |
[7] | Eskin, G., Boundary Value Problems for Elliptic Pseudodifferential Equations (1981), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 0458.35002 |
[8] | Frank, R.; Geisinger, L., Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math. (2014), in press ·Zbl 1337.35163 |
[9] | Franke, J., Elliptische Randwertprobleme in Besov-Triebel-Lizorkin-Raümen (1986), Friedrich-Schiller-Universität Jena, Dissertation |
[10] | Gonzalez, M.; Mazzeo, R.; Sire, Y., Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22, 845-863 (2012) ·Zbl 1255.53037 |
[11] | Grubb, G., Pseudo-differential boundary problems in \(L_p\)-spaces, Comm. Partial Differential Equations, 13, 289-340 (1990) ·Zbl 0723.35091 |
[12] | Grubb, G., Functional Calculus of Pseudodifferential Boundary Problems, Progr. Math., vol. 65 (1996), Birkhäuser: Birkhäuser Boston, first edition issued 1986 ·Zbl 0844.35002 |
[13] | Grubb, G., Distributions and Operators, Grad. Texts in Math., vol. 252 (2009), Springer: Springer New York ·Zbl 1171.47001 |
[14] | Grubb, G.; Hörmander, L., The transmission property, Math. Scand., 67, 273-289 (1990) ·Zbl 0766.35088 |
[15] | Grubb, G.; Kokholm, N. J., A global calculus of parameter-dependent pseudodifferential boundary problems in \(L_p\) Sobolev spaces, Acta Math., 171, 165-229 (1993) ·Zbl 0811.35176 |
[16] | Harutyunyan, G.; Schulze, B.-W., Elliptic Mixed, Transmission and Singular Crack Problems, EMS Tracts Math., vol. 4 (2008), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich ·Zbl 1141.35001 |
[17] | Hirschowitz, A.; Piriou, A., Propriétés de transmission pour les distributions intégrales de Fourier, Comm. Partial Differential Equations, 4, 113-217 (1979) ·Zbl 0456.58028 |
[18] | Hörmander, L., Linear Partial Differential Operators (1963), Springer ·Zbl 0171.06802 |
[20] | Hörmander, L., The Analysis of Linear Partial Differential Operators, I (1983), Springer Verlag: Springer Verlag Berlin, New York ·Zbl 0521.35001 |
[21] | Hörmander, L., The Analysis of Linear Partial Differential Operators, III (1985), Springer Verlag: Springer Verlag Berlin, New York ·Zbl 0601.35001 |
[22] | Melrose, R. B., The Atiyah-Patodi-Singer Index Theorem (1993), A.K. Peters: A.K. Peters Wellesley, MA ·Zbl 0796.58050 |
[23] | Rempel, S.; Schulze, B.-W., Complex powers for pseudo-differential boundary problems II, Math. Nachr., 116, 269-314 (1984) ·Zbl 0585.58041 |
[24] | Roitberg, Y., Elliptic Boundary Value Problems in the Spaces of Distributions, Math. Appl., vol. 384 (1996), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht, 415 pp ·Zbl 0862.35002 |
[25] | Roitberg, Y. A.; Sheftel, V., A homeomorphism theorem for elliptic systems and its applications, Mat. Sb., 78, 446-472 (1969) ·Zbl 0176.40901 |
[26] | Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian, J. Math. Pures Appl., 101, 275-302 (2014) ·Zbl 1285.35020 |
[27] | Seeley, R. T., Complex powers of an elliptic operator, (Proc. Sympos. Pure Math., vol. 10 (1967), Amer. Math. Soc.), 288-307 ·Zbl 0159.15504 |
[28] | Shargorodsky, E., An \(L_p\)-analogue of the Vishik-Eskin theory, Mem. Differential Equations Math. Phys., 2, 41-146 (1994), Math. Inst. Georgian Acad. Sci., Tbilisi ·Zbl 0852.35150 |
[29] | Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1995), J.A. Barth: J.A. Barth Leipzig ·Zbl 0830.46028 |
[30] | Vishik, M. I.; Eskin, G. I., Convolution equations in a bounded region, Uspekhi Mat. Nauk. Uspekhi Mat. Nauk, Russian Math. Surveys, 20, 86-151 (1965), English translation in: ·Zbl 0152.34202 |
[31] | Vishik, M. I.; Eskin, G. I., Convolution equations of variable order, Tr. Mosk. Mat. Obs.. Tr. Mosk. Mat. Obs., Trans. Moscow Math. Soc., 16, 27-52 (1967), English translation in: ·Zbl 0194.42705 |