Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Riemannian Ricci curvature lower bounds in metric measure spaces with \(\sigma\)-finite measure.(English)Zbl 1317.53060

Summary: In a prior work of the first two authors with Savaré, a new Riemannian notion of a lower bound for Ricci curvature in the class of metric measure spaces \( (X,\mathsf {d},\mathbf {m})\) was introduced, and the corresponding class of spaces was denoted by \( RCD(K,\infty )\). This notion relates the \( CD(K,N)\) theory of Sturm and Lott-Villani, in the case \( N=\infty \), to the Bakry-Emery approach. In this prior work the \( RCD(K,\infty )\) property is defined in three equivalent ways and several properties of \( RCD(K,\infty )\) spaces, including the regularization properties of the heat flow, the connections with the theory of Dirichlet forms and the stability under tensor products, are provided. In the above-mentioned work only finite reference measures \( \mathbf {m}\) have been considered. The goal of this paper is twofold: on one side we extend these results to general \(\sigma\)-finite spaces, and on the other we remove a technical assumption that appeared in the earlier work concerning a strengthening of the \( CD(K,\infty )\) condition. This more general class of spaces includes Euclidean spaces endowed with Lebesgue measure, complete noncompact Riemannian manifolds with bounded geometry and the pointed metric measure limits of manifolds with lower Ricci curvature bounds.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
49Q20 Variational problems in a geometric measure-theoretic setting
58J35 Heat and other parabolic equation methods for PDEs on manifolds
31C25 Dirichlet forms
35K90 Abstract parabolic equations
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

Cite

References:

[1][Ambrosio-Gigli11] Luigi Ambrosio and Nicola Gigli, User’s guide to optimal transport theory, To appear in the CIME Lecture Notes in Mathematics, B.Piccoli and F.Poupaud Eds., (2011).
[2]Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Z\`“urich, x+334 pp. (2008), Birkh\'”auser Verlag: Basel:Birkh\'”auser Verlag ·Zbl 1145.35001
[3]Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 2, 289-391 (2014) ·Zbl 1312.53056 ·doi:10.1007/s00222-013-0456-1
[4]Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 7, 1405-1490 (2014) ·Zbl 1304.35310 ·doi:10.1215/00127094-2681605
[5]Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29, 3, 969-996 (2013) ·Zbl 1287.46027 ·doi:10.4171/RMI/746
[6]Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Bakry–\'Emery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 1, 339-404 (2015) ·Zbl 1307.49044 ·doi:10.1214/14-AOP907
[7]An{\'e}, C{\'e}cile; Blach{\`“e}re, S{\'”e}bastien; Chafa{\`“{\i }}, Djalil; Foug{\`e}res, Pierre; Gentil, Ivan; Malrieu, Florent; Roberto, Cyril; Scheffer, Gr{\'”e}gory, Sur les in\'egalit\'es de Sobolev logarithmiques, Panoramas et Synth\`“eses [Panoramas and Syntheses] 10, xvi+217 pp. (2000), Soci\'”et\'e Math\'ematique de France, Paris ·Zbl 0982.46026
[8]Bakry, Dominique, Functional inequalities for Markov semigroups. Probability measures on groups: recent directions and trends, 91-147 (2006), Tata Inst. Fund. Res.: Mumbai:Tata Inst. Fund. Res. ·Zbl 1148.60057
[9]Brezis, Ha{\`“{\i }}m, Analyse fonctionnelle, Collection Math\'”ematiques Appliqu\'ees pour la Ma\^\i trise. [Collection of Applied Mathematics for the Master’s Degree], xiv+234 pp. (1983), Masson: Paris:Masson ·Zbl 0511.46001
[10]Cheeger, Jeff, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 3, 428-517 (1999) ·Zbl 0942.58018 ·doi:10.1007/s000390050094
[11]Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46, 3, 406-480 (1997) ·Zbl 0902.53034
[12]Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54, 1, 13-35 (2000) ·Zbl 1027.53042
[13]Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 54, 1, 37-74 (2000) ·Zbl 1027.53043
[14]Dal Maso, Gianni, An introduction to \(\Gamma \)-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, xiv+340 pp. (1993), Birkh\"auser Boston Inc.: Boston, MA:Birkh\"auser Boston Inc. ·Zbl 0816.49001 ·doi:10.1007/978-1-4612-0327-8
[15]Daneri, Sara; Savar{\'e}, Giuseppe, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40, 3, 1104-1122 (2008) ·Zbl 1166.58011 ·doi:10.1137/08071346X
[16]Gigli, Nicola, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39, 1-2, 101-120 (2010) ·Zbl 1200.35178 ·doi:10.1007/s00526-009-0303-9
[17][Gigli12] Nicola Gigli, On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc. 236 (2015), no. 1113. ·Zbl 1325.53054
[18]Gigli, Nicola; Kuwada, Kazumasa; Ohta, Shin-Ichi, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math., 66, 3, 307-331 (2013) ·Zbl 1267.58014 ·doi:10.1002/cpa.21431
[19][AmbrosioGigliMondinoSavare] Nicola Gigli, Andrea Mondino, and Giuseppe Savar\'e, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, preprint, arXiv:1311.4907 (2013). ·Zbl 1398.53044
[20]Gromov, Misha, Metric structures for Riemannian and non-Riemannian spaces, Modern Birkh\`“auser Classics, xx+585 pp. (2007), Birkh\'”auser Boston Inc.: Boston, MA:Birkh\'”auser Boston Inc. ·Zbl 1113.53001
[21]Heinonen, Juha; Koskela, Pekka, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1, 1-61 (1998) ·Zbl 0915.30018 ·doi:10.1007/BF02392747
[22]Joulin, Ald{\'e}ric, A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature, Bernoulli, 15, 2, 532-549 (2009) ·Zbl 1202.60136 ·doi:10.3150/08-BEJ158
[23]Koskela, Pekka; MacManus, Paul, Quasiconformal mappings and Sobolev spaces, Studia Math., 131, 1, 1-17 (1998) ·Zbl 0918.30011
[24]Lisini, Stefano, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28, 1, 85-120 (2007) ·Zbl 1132.60004 ·doi:10.1007/s00526-006-0032-2
[25]Lott, John; Villani, C{\'e}dric, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169, 3, 903-991 (2009) ·Zbl 1178.53038 ·doi:10.4007/annals.2009.169.903
[26]Ollivier, Yann, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal., 256, 3, 810-864 (2009) ·Zbl 1181.53015 ·doi:10.1016/j.jfa.2008.11.001
[27]Rajala, Tapio, Improved geodesics for the reduced curvature-dimension condition in branching metric spaces, Discrete Contin. Dyn. Syst., 33, 7, 3043-3056 (2013) ·Zbl 1325.53056 ·doi:10.3934/dcds.2013.33.3043
[28]Rajala, Tapio, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal., 263, 4, 896-924 (2012) ·Zbl 1260.53076 ·doi:10.1016/j.jfa.2012.05.006
[29]Rajala, Tapio, Local Poincar\'e inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44, 3-4, 477-494 (2012) ·Zbl 1250.53040 ·doi:10.1007/s00526-011-0442-7
[30]Shanmugalingam, Nageswari, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16, 2, 243-279 (2000) ·Zbl 0974.46038 ·doi:10.4171/RMI/275
[31]Sturm, Karl-Theodor, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 75, 3, 273-297 (1996) ·Zbl 0854.35016
[32]Sturm, Karl-Theodor, On the geometry of metric measure spaces. I, Acta Math., 196, 1, 65-131 (2006) ·Zbl 1105.53035 ·doi:10.1007/s11511-006-0002-8
[33]Sturm, Karl-Theodor, On the geometry of metric measure spaces. II, Acta Math., 196, 1, 133-177 (2006) ·Zbl 1106.53032
[34]Villani, C{\'e}dric, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338, xxii+973 pp. (2009), Springer-Verlag: Berlin:Springer-Verlag ·Zbl 1156.53003 ·doi:10.1007/978-3-540-71050-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp