[1] | [Ambrosio-Gigli11] Luigi Ambrosio and Nicola Gigli, User’s guide to optimal transport theory, To appear in the CIME Lecture Notes in Mathematics, B.Piccoli and F.Poupaud Eds., (2011). |
[2] | Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Z\`“urich, x+334 pp. (2008), Birkh\'”auser Verlag: Basel:Birkh\'”auser Verlag ·Zbl 1145.35001 |
[3] | Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 2, 289-391 (2014) ·Zbl 1312.53056 ·doi:10.1007/s00222-013-0456-1 |
[4] | Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 7, 1405-1490 (2014) ·Zbl 1304.35310 ·doi:10.1215/00127094-2681605 |
[5] | Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29, 3, 969-996 (2013) ·Zbl 1287.46027 ·doi:10.4171/RMI/746 |
[6] | Ambrosio, Luigi; Gigli, Nicola; Savar{\'e}, Giuseppe, Bakry–\'Emery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 1, 339-404 (2015) ·Zbl 1307.49044 ·doi:10.1214/14-AOP907 |
[7] | An{\'e}, C{\'e}cile; Blach{\`“e}re, S{\'”e}bastien; Chafa{\`“{\i }}, Djalil; Foug{\`e}res, Pierre; Gentil, Ivan; Malrieu, Florent; Roberto, Cyril; Scheffer, Gr{\'”e}gory, Sur les in\'egalit\'es de Sobolev logarithmiques, Panoramas et Synth\`“eses [Panoramas and Syntheses] 10, xvi+217 pp. (2000), Soci\'”et\'e Math\'ematique de France, Paris ·Zbl 0982.46026 |
[8] | Bakry, Dominique, Functional inequalities for Markov semigroups. Probability measures on groups: recent directions and trends, 91-147 (2006), Tata Inst. Fund. Res.: Mumbai:Tata Inst. Fund. Res. ·Zbl 1148.60057 |
[9] | Brezis, Ha{\`“{\i }}m, Analyse fonctionnelle, Collection Math\'”ematiques Appliqu\'ees pour la Ma\^\i trise. [Collection of Applied Mathematics for the Master’s Degree], xiv+234 pp. (1983), Masson: Paris:Masson ·Zbl 0511.46001 |
[10] | Cheeger, Jeff, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 3, 428-517 (1999) ·Zbl 0942.58018 ·doi:10.1007/s000390050094 |
[11] | Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46, 3, 406-480 (1997) ·Zbl 0902.53034 |
[12] | Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54, 1, 13-35 (2000) ·Zbl 1027.53042 |
[13] | Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 54, 1, 37-74 (2000) ·Zbl 1027.53043 |
[14] | Dal Maso, Gianni, An introduction to \(\Gamma \)-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, xiv+340 pp. (1993), Birkh\"auser Boston Inc.: Boston, MA:Birkh\"auser Boston Inc. ·Zbl 0816.49001 ·doi:10.1007/978-1-4612-0327-8 |
[15] | Daneri, Sara; Savar{\'e}, Giuseppe, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40, 3, 1104-1122 (2008) ·Zbl 1166.58011 ·doi:10.1137/08071346X |
[16] | Gigli, Nicola, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39, 1-2, 101-120 (2010) ·Zbl 1200.35178 ·doi:10.1007/s00526-009-0303-9 |
[17] | [Gigli12] Nicola Gigli, On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc. 236 (2015), no. 1113. ·Zbl 1325.53054 |
[18] | Gigli, Nicola; Kuwada, Kazumasa; Ohta, Shin-Ichi, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math., 66, 3, 307-331 (2013) ·Zbl 1267.58014 ·doi:10.1002/cpa.21431 |
[19] | [AmbrosioGigliMondinoSavare] Nicola Gigli, Andrea Mondino, and Giuseppe Savar\'e, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, preprint, arXiv:1311.4907 (2013). ·Zbl 1398.53044 |
[20] | Gromov, Misha, Metric structures for Riemannian and non-Riemannian spaces, Modern Birkh\`“auser Classics, xx+585 pp. (2007), Birkh\'”auser Boston Inc.: Boston, MA:Birkh\'”auser Boston Inc. ·Zbl 1113.53001 |
[21] | Heinonen, Juha; Koskela, Pekka, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1, 1-61 (1998) ·Zbl 0915.30018 ·doi:10.1007/BF02392747 |
[22] | Joulin, Ald{\'e}ric, A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature, Bernoulli, 15, 2, 532-549 (2009) ·Zbl 1202.60136 ·doi:10.3150/08-BEJ158 |
[23] | Koskela, Pekka; MacManus, Paul, Quasiconformal mappings and Sobolev spaces, Studia Math., 131, 1, 1-17 (1998) ·Zbl 0918.30011 |
[24] | Lisini, Stefano, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28, 1, 85-120 (2007) ·Zbl 1132.60004 ·doi:10.1007/s00526-006-0032-2 |
[25] | Lott, John; Villani, C{\'e}dric, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169, 3, 903-991 (2009) ·Zbl 1178.53038 ·doi:10.4007/annals.2009.169.903 |
[26] | Ollivier, Yann, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal., 256, 3, 810-864 (2009) ·Zbl 1181.53015 ·doi:10.1016/j.jfa.2008.11.001 |
[27] | Rajala, Tapio, Improved geodesics for the reduced curvature-dimension condition in branching metric spaces, Discrete Contin. Dyn. Syst., 33, 7, 3043-3056 (2013) ·Zbl 1325.53056 ·doi:10.3934/dcds.2013.33.3043 |
[28] | Rajala, Tapio, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal., 263, 4, 896-924 (2012) ·Zbl 1260.53076 ·doi:10.1016/j.jfa.2012.05.006 |
[29] | Rajala, Tapio, Local Poincar\'e inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44, 3-4, 477-494 (2012) ·Zbl 1250.53040 ·doi:10.1007/s00526-011-0442-7 |
[30] | Shanmugalingam, Nageswari, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16, 2, 243-279 (2000) ·Zbl 0974.46038 ·doi:10.4171/RMI/275 |
[31] | Sturm, Karl-Theodor, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 75, 3, 273-297 (1996) ·Zbl 0854.35016 |
[32] | Sturm, Karl-Theodor, On the geometry of metric measure spaces. I, Acta Math., 196, 1, 65-131 (2006) ·Zbl 1105.53035 ·doi:10.1007/s11511-006-0002-8 |
[33] | Sturm, Karl-Theodor, On the geometry of metric measure spaces. II, Acta Math., 196, 1, 133-177 (2006) ·Zbl 1106.53032 |
[34] | Villani, C{\'e}dric, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338, xxii+973 pp. (2009), Springer-Verlag: Berlin:Springer-Verlag ·Zbl 1156.53003 ·doi:10.1007/978-3-540-71050-9 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.