Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the motives of moduli of chains and Higgs bundles.(English)Zbl 1316.14060

A Higgs bundle over a smooth, projective curve \(C\) is a pair \((\mathcal{E},\theta)\) where \(\mathcal{E}\) is a vector bundle and \(\theta\) — the Higgs field — is a global section of \(\mathrm{End}(\mathcal{E})\otimes\Omega_C\), with \(\Omega_C\) being the sheaf of differentials of \(C\). In this paper the authors implement a new method to compute the cohomology of the moduli space \(M_n^d\) of stable rank \(n\) and degree \(d\) Higgs bundles, whenever \((n,d)=1\).
It is studied the class (or motive) of \(M_n^d\) in the dimensional completion \(\widehat{K_0}(Var)\) of the Grothendieck ring of varieties. It is known that this class can be written in terms of the classes of the subvarieties of \(M_n^d\), defined as the fixed point locus of the usual action of \(\mathbb{G}_m\) by multiplication of scalars on the Higgs field. These subvarieties are moduli spaces of chains, which are objects consisting by a collection of vector bundles \((\mathcal{E}_i)_i\) together with a collection of maps \((\phi_i)_i\), with \(\phi_i:\mathcal{E}_i\to\mathcal{E}_{i-1}\otimes \Omega_C\). Briefly, the motive of the moduli spaces of \(\alpha\)-semistable chains (the semistability condition of chains depends on a parameter \(\alpha\) and there is a specific one corresponding to the semistability of Higgs bundles) is computed by first computing the motive of the whole stack of chains and then studying its stratification according to the different types of canonical destabilising subchains — the Harder-Narasimhan stratification. These Harder-Narasimhan strata are fibered over spaces of semistable chains of lower rank, for which the motive is known by induction.
As an application of this approach, it is proved that the group of \(n\)-torsion points of the Jacobian of \(C\) acts trivially on the middle-dimensional cohomology of \(M_n^L\), where \(M_n^L\) is the moduli space of rank \(n\) Higgs bundles \((\mathcal{E},\theta)\) with trivial determinant i.e. such that \(\mathrm{det}(\mathcal{E})\cong L\) and \(\mathrm{tr}(\theta)=0\) and where \((n,\mathrm{deg}(L))=1\).
An explicit formula for the motive of \(M_4^d\), with \(d\) odd, is obtained, providing new evidence for a conjecture ofT. Hausel andF. Rodriguez-Villegas [Invent. Math. 174, No. 3, 555–624 (2008;Zbl 1213.14020)] on the Poincaré polynomial of this space.
Along the way, several explicit recursive formulas for the motives of several types of spaces of \(\alpha\)-semistable chains are obtained.

MSC:

14H60 Vector bundles on curves and their moduli
14D23 Stacks and moduli problems

Citations:

Zbl 1213.14020

Cite

References:

[1]Álvarez-Cónsul, L., García-Prada, O.: Dimensional reduction, SL(2, C)-equivariant bundles and stable holomorphic chains. Int. J. Math. 12, 159-201 (2001) ·Zbl 1110.32305 ·doi:10.1142/S0129167X01000745
[2]Álvarez-Cónsul, L., García-Prada, O., Schmitt, A.: On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces. Int. Math. Res. Papers 2006, art. ID 73597, 82 pp. ·Zbl 1111.32012 ·doi:10.1155/IMRP/2006/73597
[3]Artin, M., Grothendieck, A., Verdier, J. L.: Théorie des topos et cohomologie étale des schémas. Tome 3 (SGA 4). Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Math. 305, Springer, Berlin (1973)
[4]Atiyah, M. F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London A 308, 523-615 (1983) ·Zbl 0509.14014 ·doi:10.1098/rsta.1983.0017
[5]Behrend, K., Dhillon, A.: On the motivic class of the stack of bundles. Adv. Math. 212, 617-644 (2007) ·Zbl 1138.14014 ·doi:10.1016/j.aim.2006.11.003
[6]Białynicki-Birula, A.: Theorems on actions of algebraic groups. Ann. of Math. 98, 480-497 (1973) ·Zbl 0275.14007 ·doi:10.2307/1970915
[7]Bifet, E., Ghione, F., Letizia, M.: On the Abel-Jacobi map for divisors of higher rank on a curve. Math. Ann. 299, 641-672 (1994) ·Zbl 0840.14003 ·doi:10.1007/BF01459804
[8]Biswas, I., Ramanan, S.: An infinitesimal study of the moduli of Hitchin pairs. J. London Math. Soc. (2) 49, 219-231 (1994) ·Zbl 0819.58007 ·doi:10.1112/jlms/49.2.219
[9]Bradlow, S. B., García-Prada, O., Gothen, P.: Moduli spaces of holomorphic triples over compact Riemann surfaces. Math. Ann. 328, 299-351 (2004) ·Zbl 1041.32008 ·doi:10.1007/s00208-003-0484-z
[10]Chuang, W., Diaconescu, D. E., Pan, G.: Wallcrossing and cohomology of the moduli space of Hitchin pairs. Comm. Number Theory Phys. 5, 1-56 (2011) ·Zbl 1259.14009 ·doi:10.4310/CNTP.2011.v5.n1.a1
[11]Del Baño, S.: On the motive of moduli spaces of rank two vector bundles over a curve. Compos. Math. 131, 1-30 (2002) ·Zbl 1060.14050 ·doi:10.1023/A:1014756205008
[12]Ekedahl, T.: The Grothendieck group of algebraic stacks. ·Zbl 0591.14010
[13]García-Prada, O., Heinloth, J.: The y-genus of the moduli space of PGLn-Higgs bundles on a curve (for degree coprime to n). Duke Math. J. 162, 2731-2749 (2013) ·Zbl 1300.14013 ·doi:10.1215/00127094-2381369
[14]Gothen, P.: The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface. Int. J. Math. 5, 861-875 (1994) ·Zbl 0860.14030 ·doi:10.1142/S0129167X94000449
[15]Gothen, P., King, A.: Homological algebra of twisted quiver bundles. J. London Math. Soc. (2) 71, 85-99 (2005) ·Zbl 1095.14012 ·doi:10.1112/S0024610704005952
[16]Göttsche, L.: On the motive of the Hilbert scheme of points on a surface. Math. Res. Lett. 8, 613-627 (2001) ·Zbl 1079.14500 ·doi:10.4310/MRL.2001.v8.n5.a3
[17]Harder, G., Narasimhan, M. S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212, 215-48 (1975) ·Zbl 0324.14006 ·doi:10.1007/BF01357141
[18]Hausel, T.: Mirror symmetry and Langlands duality in the non-abelian Hodge theory of a curve, In: Geometric Methods in Algebra and Number Theory, Progr. Math. 235, Birkhäuser Boston, 193-217 (2005) ·Zbl 1099.14026
[19]Hausel, T., Rodríguez-Villegas, F.: Mixed Hodge polynomials of character varieties (with an ·Zbl 1213.14020 ·doi:10.1007/s00222-008-0142-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp