[1] | Álvarez-Cónsul, L., García-Prada, O.: Dimensional reduction, SL(2, C)-equivariant bundles and stable holomorphic chains. Int. J. Math. 12, 159-201 (2001) ·Zbl 1110.32305 ·doi:10.1142/S0129167X01000745 |
[2] | Álvarez-Cónsul, L., García-Prada, O., Schmitt, A.: On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces. Int. Math. Res. Papers 2006, art. ID 73597, 82 pp. ·Zbl 1111.32012 ·doi:10.1155/IMRP/2006/73597 |
[3] | Artin, M., Grothendieck, A., Verdier, J. L.: Théorie des topos et cohomologie étale des schémas. Tome 3 (SGA 4). Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Math. 305, Springer, Berlin (1973) |
[4] | Atiyah, M. F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London A 308, 523-615 (1983) ·Zbl 0509.14014 ·doi:10.1098/rsta.1983.0017 |
[5] | Behrend, K., Dhillon, A.: On the motivic class of the stack of bundles. Adv. Math. 212, 617-644 (2007) ·Zbl 1138.14014 ·doi:10.1016/j.aim.2006.11.003 |
[6] | Białynicki-Birula, A.: Theorems on actions of algebraic groups. Ann. of Math. 98, 480-497 (1973) ·Zbl 0275.14007 ·doi:10.2307/1970915 |
[7] | Bifet, E., Ghione, F., Letizia, M.: On the Abel-Jacobi map for divisors of higher rank on a curve. Math. Ann. 299, 641-672 (1994) ·Zbl 0840.14003 ·doi:10.1007/BF01459804 |
[8] | Biswas, I., Ramanan, S.: An infinitesimal study of the moduli of Hitchin pairs. J. London Math. Soc. (2) 49, 219-231 (1994) ·Zbl 0819.58007 ·doi:10.1112/jlms/49.2.219 |
[9] | Bradlow, S. B., García-Prada, O., Gothen, P.: Moduli spaces of holomorphic triples over compact Riemann surfaces. Math. Ann. 328, 299-351 (2004) ·Zbl 1041.32008 ·doi:10.1007/s00208-003-0484-z |
[10] | Chuang, W., Diaconescu, D. E., Pan, G.: Wallcrossing and cohomology of the moduli space of Hitchin pairs. Comm. Number Theory Phys. 5, 1-56 (2011) ·Zbl 1259.14009 ·doi:10.4310/CNTP.2011.v5.n1.a1 |
[11] | Del Baño, S.: On the motive of moduli spaces of rank two vector bundles over a curve. Compos. Math. 131, 1-30 (2002) ·Zbl 1060.14050 ·doi:10.1023/A:1014756205008 |
[12] | Ekedahl, T.: The Grothendieck group of algebraic stacks. ·Zbl 0591.14010 |
[13] | García-Prada, O., Heinloth, J.: The y-genus of the moduli space of PGLn-Higgs bundles on a curve (for degree coprime to n). Duke Math. J. 162, 2731-2749 (2013) ·Zbl 1300.14013 ·doi:10.1215/00127094-2381369 |
[14] | Gothen, P.: The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface. Int. J. Math. 5, 861-875 (1994) ·Zbl 0860.14030 ·doi:10.1142/S0129167X94000449 |
[15] | Gothen, P., King, A.: Homological algebra of twisted quiver bundles. J. London Math. Soc. (2) 71, 85-99 (2005) ·Zbl 1095.14012 ·doi:10.1112/S0024610704005952 |
[16] | Göttsche, L.: On the motive of the Hilbert scheme of points on a surface. Math. Res. Lett. 8, 613-627 (2001) ·Zbl 1079.14500 ·doi:10.4310/MRL.2001.v8.n5.a3 |
[17] | Harder, G., Narasimhan, M. S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212, 215-48 (1975) ·Zbl 0324.14006 ·doi:10.1007/BF01357141 |
[18] | Hausel, T.: Mirror symmetry and Langlands duality in the non-abelian Hodge theory of a curve, In: Geometric Methods in Algebra and Number Theory, Progr. Math. 235, Birkhäuser Boston, 193-217 (2005) ·Zbl 1099.14026 |
[19] | Hausel, T., Rodríguez-Villegas, F.: Mixed Hodge polynomials of character varieties (with an ·Zbl 1213.14020 ·doi:10.1007/s00222-008-0142-x |