Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On Kauffman bracket skein modules at roots of unity.(English)Zbl 1315.57027

Summary: We reprove and expand results ofF. Bonahon andH. Wong [Geom. Topol. 15, No. 3, 1569–1615 (2011;Zbl 1227.57003), “Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations”,arXiv:1206.1638] on central elements of the Kauffman bracket skein modules at roots of 1 and on the existence of the Chebyshev homomorphism, using elementary skein methods.

MSC:

57N10 Topology of general \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)

Citations:

Zbl 1227.57003

Cite

References:

[1]C Blanchet, N Habegger, G Masbaum, P Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 (1992) 685 ·Zbl 0771.57004 ·doi:10.1016/0040-9383(92)90002-Y
[2]F Bonahon, H Wong, Representations of the Kauffman skein algebra I: Invariants and miraculous cancellations, ·Zbl 1383.57015
[3]F Bonahon, H Wong, Quantum traces for representations of surface groups in \(\mathrm{SL}_2(\mathbb C)\), Geom. Topol. 15 (2011) 1569 ·Zbl 1227.57003 ·doi:10.2140/gt.2011.15.1569
[4]D Bullock, Rings of \(\mathrm{SL}_2(\mathbbC)\)-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 ·Zbl 0907.57010 ·doi:10.1007/s000140050032
[5]D Bullock, C Frohman, J Kania-Bartoszyńska, Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications 8 (1999) 265 ·Zbl 0932.57015 ·doi:10.1142/S0218216599000183
[6]D Bullock, J H Przytycki, Multiplicative structure of Kauffman bracket skein module quantizations, Proc. Amer. Math. Soc. 128 (2000) 923 ·Zbl 0971.57021 ·doi:10.1090/S0002-9939-99-05043-1
[7]V V Fok, L O Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999) 511 ·Zbl 0986.32007 ·doi:10.1007/BF02557246
[8]C Frohman, R Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000) 4877 ·Zbl 0951.57007 ·doi:10.1090/S0002-9947-00-02512-5
[9]R M Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105 ·Zbl 0897.57014 ·doi:10.1023/A:1007460128279
[10]L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395 ·Zbl 0622.57004 ·doi:10.1016/0040-9383(87)90009-7
[11]T T Q Lê, The colored Jones polynomial and the \(A\)-polynomial of knots, Adv. Math. 207 (2006) 782 ·Zbl 1114.57014 ·doi:10.1016/j.aim.2006.01.006
[12]T T Q Lê, A T Tran, The Kauffman bracket skein module of two-bridge links, Proc. Amer. Math. Soc. 142 (2014) 1045 ·Zbl 1291.57016 ·doi:10.1090/S0002-9939-2013-11835-6
[13]W B R Lickorish, An introduction to knot theory, Graduate Texts in Math. 175, Springer (1997) ·Zbl 0886.57001 ·doi:10.1007/978-1-4612-0691-0
[14]J Marché, The skein module of torus knots, Quantum Topol. 1 (2010) 413 ·Zbl 1213.57020 ·doi:10.4171/QT/11
[15]J H Przytycki, Fundamentals of Kauffman bracket skein modules, Kobe J. Math. 16 (1999) 45 ·Zbl 0947.57017
[16]J H Przytycki, A S Sikora, On skein algebras and \(\mathrm{SL}_2(\mathbbC)\)-character varieties, Topology 39 (2000) 115 ·Zbl 0958.57011 ·doi:10.1016/S0040-9383(98)00062-7
[17]A S Sikora, Skein modules at the \(4^{\text{th}}\) roots of unity, J. Knot Theory Ramifications 13 (2004) 571 ·Zbl 1079.57012 ·doi:10.1142/S0218216504003391
[18]V G Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. 24 (1991) 635 ·Zbl 0758.57011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp