Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Extension groups between atoms and objects in locally noetherian Grothendieck category.(English)Zbl 1314.18012

Recall that if \(R\) is a commutative noetherian ring, \(M\) is an \(R\)-module and \(\mathfrak{p}\) is a prime ideal in \(R\), then the \(i\)-th Bass number \(\mu_i(\mathfrak{p},M)\) is defined to be the number of the copies of the injective hull \(E(R/\mathfrak{p})\) of \(R/\mathfrak{p}\) which occurs in the \(i\)-th term \(E^i(M)\) of the minimal injective resolution of \(M\). A result going back toH. Bass [Math. Z. 82, 8–28 (1963;Zbl 0112.26604)] says that \(\mu_i(\mathfrak{p},M)=\dim_{k(\mathfrak{p})}\mathrm{Ext}_R^i(R/\mathfrak{p},M)_{\mathfrak{p}}\), where \(k(\mathfrak{p})\) is the residue field of \(\mathfrak{p}\). In the paper under review it is generalized this classical result, the place of the module category over \(R\) being taken by a locally noetherian Grothendieck category \(\mathcal A\). In this new setting the rôle of quotients \(R/\mathfrak{p}\) with \(\mathfrak{p}\) a prime ideal is taken by atoms. An atom is an equivalence classes of so called monoform objects of \(\mathcal A\) (that is objects \(H\in\mathcal{A}\), for which \(H\) and \(H/N\) have no nonzero isomorphic subobjects, for every \(0\neq N\leq H\)) modulo an appropriate equivalence relation.

MSC:

18E15 Grothendieck categories (MSC2010)
16D90 Module categories in associative algebras
16G30 Representations of orders, lattices, algebras over commutative rings
13C60 Module categories and commutative rings

Citations:

Zbl 0112.26604

Cite

References:

[1]Alonso Tarrío, L.; Jeremías López, A.; Souto Salorio, M. J., Localization in categories of complexes and unbounded resolutions, Canad. J. Math., 52, 2, 225-247 (2000) ·Zbl 0948.18008
[2]Azumaya, G., Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem, Nagoya Math. J., 1, 117-124 (1950) ·Zbl 0040.01201
[3]Bass, H., Injective dimension in Noetherian rings, Trans. Amer. Math. Soc., 102, 18-29 (1962) ·Zbl 0126.06503
[4]Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28 (1963) ·Zbl 0112.26604
[5]Bökstedt, M.; Neeman, A., Homotopy limits in triangulated categories, Compos. Math., 86, 2, 209-234 (1993) ·Zbl 0802.18008
[6]Foxby, H.-B., Bounded complexes of flat modules, J. Pure Appl. Algebra, 15, 2, 149-172 (1979) ·Zbl 0411.13006
[7]Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) ·Zbl 0201.35602
[8]Gabriel, P.; Oberst, U., Spektralkategorien und reguläre Ringe im von-Neumannschen Sinn, Math. Z., 92, 389-395 (1966) ·Zbl 0136.25602
[9]Goto, S.; Nishida, K., Towards a theory of Bass numbers with application to Gorenstein algebras, Colloq. Math., 91, 2, 191-253 (2002) ·Zbl 1067.16014
[10]Hartshorne, R., Residues and Duality, Lecture Notes in Math., vol. 20 (1966), Springer-Verlag: Springer-Verlag Berlin-New York, vii+423 pp ·Zbl 0212.26101
[11]Kanda, R., Classifying Serre subcategories via atom spectrum, Adv. Math., 231, 3-4, 1572-1588 (2012) ·Zbl 1255.18011
[12]Matlis, E., Injective modules over Noetherian rings, Pacific J. Math., 8, 511-528 (1958) ·Zbl 0084.26601
[13]Matsumura, H., Commutative Ring Theory, Cambridge Stud. Adv. Math., vol. 8 (1989), Cambridge University Press: Cambridge University Press Cambridge, xiv+320 pp ·Zbl 0666.13002
[14]McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings, Pure Appl. Math. (N. Y.) (1987), A Wiley-Interscience Publication, John Wiley & Sons, Ltd.: A Wiley-Interscience Publication, John Wiley & Sons, Ltd. Chichester, xvi+596 pp ·Zbl 0644.16008
[15]Mitchell, B., The full imbedding theorem, Amer. J. Math., 86, 619-637 (1964) ·Zbl 0124.01502
[16]Popescu, N., Abelian Categories with Applications to Rings and Modules, London Math. Soc. Monogr., vol. 3 (1973), Academic Press: Academic Press London-New York, xii+467 pp ·Zbl 0271.18006
[17]Spaltenstein, N., Resolutions of unbounded complexes, Compos. Math., 65, 2, 121-154 (1988) ·Zbl 0636.18006
[18]Storrer, H. H., On Goldman’s primary decomposition, (Lectures on Rings and Modules, Tulane Univ. Ring and Operator Theory Year, 1970-1971, vol. I. Lectures on Rings and Modules, Tulane Univ. Ring and Operator Theory Year, 1970-1971, vol. I, Lecture Notes in Math., vol. 246 (1972), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York), 617-661 ·Zbl 0227.16024
[19]Takahashi, R., On localizing subcategories of derived categories, J. Math. Kyoto Univ., 49, 4, 771-783 (2009) ·Zbl 1198.13011
[20]Weibel, C. A., An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., vol. 38 (1994), Cambridge University Press: Cambridge University Press Cambridge, xiv+450 pp ·Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp