16E05 | Syzygies, resolutions, complexes in associative algebras |
17B37 | Quantum groups (quantized enveloping algebras) and related deformations |
20C08 | Hecke algebras and their representations |
05E10 | Combinatorial aspects of representation theory |
[1] | A. Berenstein and D. Kazhdan, Geometric and unipotent crystals, II: From unipotent bicrystals to crystal bases , Contemp. Math. 433 (2007), 13-88. ·Zbl 1154.14035 ·doi:10.1090/conm/433/08321 |
[2] | N. Bourbaki, “Lie groups and Lie algebras” in Elements of Mathematics , Springer, New York, 2005, Chapters 7-9. ·Zbl 1139.17002 |
[3] | J. Brundan, Some dual canonical basis calculations in \(\mathrm{F}_{4}\), September 2012, output from a computer calculation available at . |
[4] | J. Brundan and A. Kleshchev, Homological properties of ADE Khovanov-Lauda-Rouquier algebras , preprint, [math.RT]. 1210.6900v1 |
[5] | V. Dlab, Properly stratified algebras , C. R. Acad. Sci. Paris 331 (2000), 191-196. ·Zbl 0964.16009 ·doi:10.1016/S0764-4442(00)01612-8 |
[6] | S. Donkin. The \(q\)-Schur Algebra , Cambridge Univ. Press, Cambridge, Mass., 1998. ·Zbl 0927.20003 |
[7] | J. A. Green, Quantum groups, Hall algebras and quantum shuffles , Progress Math. 141 (1998), 273-290. ·Zbl 0890.17007 |
[8] | S.-J. Kang, S.-J. Oh, and E. Park, Categorification of quantum generalized Kac-Moody algebras and crystal bases , Internat. J. Math. 23 (2012). ·Zbl 1283.17014 ·doi:10.1142/S0129167X12501169 |
[9] | M. Kashiwara, On crystal bases of the \(q\)-analogue of universal enveloping algebras , Duke Math. J. 63 (1991), 465-516. ·Zbl 0739.17005 ·doi:10.1215/S0012-7094-91-06321-0 |
[10] | M. Kashiwara and Y. Saito, Geometric construction of crystal bases , Duke Math. J. 89 (1997), 9-36. ·Zbl 0901.17006 ·doi:10.1215/S0012-7094-97-08902-X |
[11] | S. Kato, PBW bases and KLR algebras , preprint, [math.QA]. 1203.5254v4 |
[12] | M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups I , Represent. Theory 13 (2009), 309-347. ·Zbl 1188.81117 ·doi:10.1090/S1088-4165-09-00346-X |
[13] | M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups II , Trans. Amer. Math. Soc. 363 (2011), 2685-2700. ·Zbl 1214.81113 ·doi:10.1090/S0002-9947-2010-05210-9 |
[14] | A. Kleshchev and A. Ram, Homogeneous representations of Khovanov-Lauda algebras , J. Eur. Math. Soc. 12 (2010), 1293-1306. ·Zbl 1241.20005 ·doi:10.4171/JEMS/230 |
[15] | A. Kleshchev and A. Ram, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words , Math. Ann. 349 (2011), 943-975. ·Zbl 1267.20010 ·doi:10.1007/s00208-010-0543-1 |
[16] | A. Lauda and M. Vazirani, Crystals from categorified quantum groups , Adv. Math. 228 (2011), 803-861. ·Zbl 1246.17017 ·doi:10.1016/j.aim.2011.06.009 |
[17] | B. Leclerc, Dual canonical bases, quantum shuffles and \(q\)-characters , Math. Z. 246 (2004), 691-732. ·Zbl 1052.17008 ·doi:10.1007/s00209-003-0609-9 |
[18] | S. Levendorskii and Y. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori , Comm. Math. Phys. 139 (1991), 141-170. ·Zbl 0729.17011 ·doi:10.1007/BF02102732 |
[19] | G. Lusztig, Canonical bases arising from quantized enveloping algebras , J. Amer. Math. Soc. 3 (1990), 447-498. ·Zbl 0703.17008 ·doi:10.2307/1990961 |
[20] | G. Lusztig, Introduction to Quantum Groups , Birkhäuser, Boston, 1993. ·Zbl 0788.17010 |
[21] | G. Lusztig, Braid group action and canonical bases , Adv. Math. 122 (1996), 237-261. ·Zbl 0861.17008 ·doi:10.1006/aima.1996.0061 |
[22] | R. Maksimau, Canonical basis, KLR-algebras and parity sheaves , preprint, [math.RT]. 1301.6261v2 |
[23] | P. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: finite type , to appear in J. Reine Angew. Math. ·Zbl 1378.17018 |
[24] | P. Papi, A characterization of a special ordering in a root system , Proc. Amer. Math. Soc. 120 (1994), 661-665. ·Zbl 0799.20037 ·doi:10.2307/2160454 |
[25] | M. Rosso, Quantum groups and quantum shuffles , Invent. Math. 133 (1998), 399-416. ·Zbl 0912.17005 ·doi:10.1007/s002220050249 |
[26] | M. Rosso, Lyndon bases and the multiplicative formula for \(R\)-matrices , preprint, 2002. |
[27] | R. Rouquier, Quiver Hecke algebras and \(2\)-Lie algebras , Algebra Colloq. 19 (2012), 359-410. ·Zbl 1247.20002 ·doi:10.1142/S1005386712000247 |
[28] | R. Rouquier, 2-Kac-Moody algebras , preprint, [math.RT]. 0812.5023v1 |
[29] | Y. Saito, PBW basis of quantized universal enveloping algebras , Publ. RIMS. Kyoto Univ. 30 (1994), 209-232. ·Zbl 0812.17013 ·doi:10.2977/prims/1195166130 |
[30] | S. Tsuchioka, Answer to question “ Where does the canonical basis differ from the KLR basis ?” . ·Zbl 1205.17023 |
[31] | M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras , J. Reine Angew. Math. 659 (2011), 67-100. ·Zbl 1229.17019 ·doi:10.1515/CRELLE.2011.068 |
[32] | C. Weibel, An Introduction to Homological Algebra , Cambridge Univ. Press, Cambridge, Mass., 1994. ·Zbl 0797.18001 |
[33] | G. Williamson, On an analogue of the James conjecture , Represent. Theory 18 (2014), 15-27. ·Zbl 1316.20002 ·doi:10.1090/S1088-4165-2014-00447-3 |