[1] | U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc., 3 (1990), pp. 355-374.; ·Zbl 0704.53032 |
[2] | L. Ambrosio and N. Gigli, A user’s guide to optimal transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, Vol. 2062, Springer, 2011.; |
[3] | L. Ambrosio, N. Gigli, A. Mondino, and T. Rajala, Riemannian ricci curvature lower bounds in metric measure spaces with ff-ffnite measure. Preprint, arXiv:1207.4924, 2011.; ·Zbl 1317.53060 |
[4] | L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008.; ·Zbl 1145.35001 |
[5] | , Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Accepted by Revista Matemática Iberoamericana, arXiv:1111.3730, 2011.; |
[6] | , Metric measure spaces with riemannian Ricci curvature bounded from below. Preprint, arXiv:1109.0222, 2011.; |
[7] | , Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Preprint, arXiv:1209.5786, 2012.; |
[8] | L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Inventiones mathematicae, (2013), pp. 1-103.; |
[9] | L. Ambrosio, A. Mondino, and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces. Preprint, 2013.; ·Zbl 1477.49003 |
[10] | K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259 (2010), pp. 28-56.; ·Zbl 1196.53027 |
[11] | A. Björn and J. Björn, Nonlinear potential theory on metric spaces, vol. 17 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2011.; ·Zbl 1231.31001 |
[12] | F. Cavalletti and K.-T. Sturm, Local curvature-dimension condition implies measure-contraction property, J. Funct. Anal., 262 (2012), pp. 5110-5127.; ·Zbl 1244.53050 |
[13] | J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), pp. 428-517.; ·Zbl 0942.58018 |
[14] | J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 144 (1996), pp. 189-237.; ·Zbl 0865.53037 |
[15] | , On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), pp. 406-480.; ·Zbl 0902.53034 |
[16] | , On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54 (2000), pp. 13-35.; ·Zbl 1027.53042 |
[17] | , On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 54 (2000), pp. 37-74.; ·Zbl 1027.53043 |
[18] | J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, 6 (1971/72), pp. 119-128.; ·Zbl 0223.53033 |
[19] | D. L. Cohn, Measure theory, Birkhäuser Boston Inc., Boston, MA, 1993. Reprint of the 1980 original.; ·Zbl 0860.28001 |
[20] | M. Erbar, K. Kuwada, and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Preprint, arXiv:1303.4382, 2013.; ·Zbl 1329.53059 |
[21] | N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. PDE, 39 (2010), pp. 101-120.; ·Zbl 1200.35178 |
[22] | , On the differential structure of metric measure spaces and applications. Preprint, arXiv:1205.6622, 2012.; |
[23] | , Optimal maps in non branching spaces with Ricci curvature bounded from below, Geom. Funct. Anal., 22 (2012), pp. 990-999.; ·Zbl 1257.53055 |
[24] | , The splitting theorem in non-smooth context. Preprint, arXiv:1302.5555, 2013.; |
[25] | N. Gigli, K. Kuwada, and S.-i. Ohta, Heat flow on Alexandrov spaces, Communications on Pure and Applied Mathematics, 66 (2013), pp. 307-331.; ·Zbl 1267.58014 |
[26] | N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces. Accepted at JMPA, arXiv:1209.3796, 2012.; ·Zbl 1283.31002 |
[27] | N. Gigli, A. Mondino, and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications. Preprint, 2013.; ·Zbl 1283.31002 |
[28] | N. Gigli and S. Mosconi, The Abresch-Gromoll inequality in a non-smooth setting. Accepted at DCDS-A, arXiv:1209.3813, 2012.; ·Zbl 1280.53038 |
[29] | N. Gigli, T. Rajala, and K.-T. Sturm, Optimal maps and exponentiation on ffnite dimensional spaces with Ricci curvature bounded from below. Preprint, 2013.; ·Zbl 1361.53036 |
[30] | A. Grigor0yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.), 36 (1999), pp. 135-249.; ·Zbl 0927.58019 |
[31] | J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.; ·Zbl 0985.46008 |
[32] | , Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.), 44 (2007), pp. 163-232.; ·Zbl 1124.28003 |
[33] | R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1-17.; ·Zbl 0915.35120 |
[34] | B. Kleiner and J. Mackay, Differentiable structure on metric measure spaces: a primer. Preprint, arXiv:1108.1324, 2011.; ·Zbl 1339.30001 |
[35] | K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), pp. 3758-3774.; ·Zbl 1194.53032 |
[36] | J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal., 245 (2007), pp. 311-333.; ·Zbl 1119.53028 |
[37] | , Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), pp. 903-991.; ·Zbl 1178.53038 |
[38] | S.-i. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), pp. 211-249.; ·Zbl 1175.49044 |
[39] | S.-i. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math., 62 (2009), pp. 1386-1433.; ·Zbl 1176.58012 |
[40] | , Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal., 204 (2012), pp. 917-944.; ·Zbl 1257.53098 |
[41] | Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom., 39 (1994), pp. 629-658.; ·Zbl 0808.53061 |
[42] | G. Perelman, Dc structure on Alexandrov Space. Unpublished preprint, available online at http://www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf.; |
[43] | A. Petrunin, Alexandrov meets Lott-Villani-Sturm, Münster J. Math., 4 (2011), pp. 53-64.; ·Zbl 1247.53038 |
[44] | T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal., 263 (2012), pp. 896-924.; ·Zbl 1260.53076 |
[45] | , Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44 (2012), pp. 477-494. [46] T. Rajala and K.-T. Sturm, Non-branching geodesics and optimalmaps in strong CD(K,1)-spaces. Preprint, arXiv:1207.6754, 2012.; ·Zbl 1250.53040 |
[46] | N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), pp. 243-279.; ·Zbl 0974.46038 |
[47] | K.-T. Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties, J. Reine Angew. Math., 456 (1994), pp. 173-196.; ·Zbl 0806.53041 |
[48] | , Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 75 (1996), pp. 273-297.; ·Zbl 0854.35016 |
[49] | , On the geometry of metric measure spaces. I, Acta Math., 196 (2006), pp. 65-131.; ·Zbl 1105.53035 |
[50] | , On the geometry of metric measure spaces. II, Acta Math., 196 (2006), pp. 133-177.; ·Zbl 1106.53032 |
[51] | C. Villani, Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.; ·Zbl 1156.53003 |
[52] | N. Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal., 178 (2000), pp. 64-112.; ·Zbl 0979.46035 |