Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature.(English)Zbl 1310.53031

Summary: In the recent paper [the author, “The splitting theorem in non-smooth context”, Preprint,arXiv:1302.5555] the Cheeger-Colding-Gromoll splitting theorem has been generalized to the abstract class of metric measure spaces with Riemannian Ricci curvature bounded from below, the analysis being based on some definitions and results contained in [the author, “On the differential structure of metric measure spaces and applications”, Preprint,arXiv:1205.6622]. These two papers add up to almost 200 pages and as such they are not suitable for getting a quick idea of the techniques used to work in the non-smooth setting. This is the aim of this note: to provide an as short as possible yet comprehensive proof of the splitting in such abstract framework.

MSC:

53C20 Global Riemannian geometry, including pinching
52-02 Research exposition (monographs, survey articles) pertaining to convex and discrete geometry
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C70 Direct methods (\(G\)-spaces of Busemann, etc.)

Cite

References:

[1]U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc., 3 (1990), pp. 355-374.; ·Zbl 0704.53032
[2]L. Ambrosio and N. Gigli, A user’s guide to optimal transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, Vol. 2062, Springer, 2011.;
[3]L. Ambrosio, N. Gigli, A. Mondino, and T. Rajala, Riemannian ricci curvature lower bounds in metric measure spaces with ff-ffnite measure. Preprint, arXiv:1207.4924, 2011.; ·Zbl 1317.53060
[4]L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008.; ·Zbl 1145.35001
[5], Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Accepted by Revista Matemática Iberoamericana, arXiv:1111.3730, 2011.;
[6], Metric measure spaces with riemannian Ricci curvature bounded from below. Preprint, arXiv:1109.0222, 2011.;
[7], Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Preprint, arXiv:1209.5786, 2012.;
[8]L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Inventiones mathematicae, (2013), pp. 1-103.;
[9]L. Ambrosio, A. Mondino, and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces. Preprint, 2013.; ·Zbl 1477.49003
[10]K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259 (2010), pp. 28-56.; ·Zbl 1196.53027
[11]A. Björn and J. Björn, Nonlinear potential theory on metric spaces, vol. 17 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2011.; ·Zbl 1231.31001
[12]F. Cavalletti and K.-T. Sturm, Local curvature-dimension condition implies measure-contraction property, J. Funct. Anal., 262 (2012), pp. 5110-5127.; ·Zbl 1244.53050
[13]J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), pp. 428-517.; ·Zbl 0942.58018
[14]J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 144 (1996), pp. 189-237.; ·Zbl 0865.53037
[15], On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), pp. 406-480.; ·Zbl 0902.53034
[16], On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54 (2000), pp. 13-35.; ·Zbl 1027.53042
[17], On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 54 (2000), pp. 37-74.; ·Zbl 1027.53043
[18]J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, 6 (1971/72), pp. 119-128.; ·Zbl 0223.53033
[19]D. L. Cohn, Measure theory, Birkhäuser Boston Inc., Boston, MA, 1993. Reprint of the 1980 original.; ·Zbl 0860.28001
[20]M. Erbar, K. Kuwada, and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Preprint, arXiv:1303.4382, 2013.; ·Zbl 1329.53059
[21]N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. PDE, 39 (2010), pp. 101-120.; ·Zbl 1200.35178
[22], On the differential structure of metric measure spaces and applications. Preprint, arXiv:1205.6622, 2012.;
[23], Optimal maps in non branching spaces with Ricci curvature bounded from below, Geom. Funct. Anal., 22 (2012), pp. 990-999.; ·Zbl 1257.53055
[24], The splitting theorem in non-smooth context. Preprint, arXiv:1302.5555, 2013.;
[25]N. Gigli, K. Kuwada, and S.-i. Ohta, Heat flow on Alexandrov spaces, Communications on Pure and Applied Mathematics, 66 (2013), pp. 307-331.; ·Zbl 1267.58014
[26]N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces. Accepted at JMPA, arXiv:1209.3796, 2012.; ·Zbl 1283.31002
[27]N. Gigli, A. Mondino, and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications. Preprint, 2013.; ·Zbl 1283.31002
[28]N. Gigli and S. Mosconi, The Abresch-Gromoll inequality in a non-smooth setting. Accepted at DCDS-A, arXiv:1209.3813, 2012.; ·Zbl 1280.53038
[29]N. Gigli, T. Rajala, and K.-T. Sturm, Optimal maps and exponentiation on ffnite dimensional spaces with Ricci curvature bounded from below. Preprint, 2013.; ·Zbl 1361.53036
[30]A. Grigor0yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.), 36 (1999), pp. 135-249.; ·Zbl 0927.58019
[31]J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.; ·Zbl 0985.46008
[32], Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.), 44 (2007), pp. 163-232.; ·Zbl 1124.28003
[33]R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1-17.; ·Zbl 0915.35120
[34]B. Kleiner and J. Mackay, Differentiable structure on metric measure spaces: a primer. Preprint, arXiv:1108.1324, 2011.; ·Zbl 1339.30001
[35]K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), pp. 3758-3774.; ·Zbl 1194.53032
[36]J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal., 245 (2007), pp. 311-333.; ·Zbl 1119.53028
[37], Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), pp. 903-991.; ·Zbl 1178.53038
[38]S.-i. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), pp. 211-249.; ·Zbl 1175.49044
[39]S.-i. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math., 62 (2009), pp. 1386-1433.; ·Zbl 1176.58012
[40], Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal., 204 (2012), pp. 917-944.; ·Zbl 1257.53098
[41]Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom., 39 (1994), pp. 629-658.; ·Zbl 0808.53061
[42]G. Perelman, Dc structure on Alexandrov Space. Unpublished preprint, available online at http://www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf.;
[43]A. Petrunin, Alexandrov meets Lott-Villani-Sturm, Münster J. Math., 4 (2011), pp. 53-64.; ·Zbl 1247.53038
[44]T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal., 263 (2012), pp. 896-924.; ·Zbl 1260.53076
[45], Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44 (2012), pp. 477-494. [46] T. Rajala and K.-T. Sturm, Non-branching geodesics and optimalmaps in strong CD(K,1)-spaces. Preprint, arXiv:1207.6754, 2012.; ·Zbl 1250.53040
[46]N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), pp. 243-279.; ·Zbl 0974.46038
[47]K.-T. Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties, J. Reine Angew. Math., 456 (1994), pp. 173-196.; ·Zbl 0806.53041
[48], Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 75 (1996), pp. 273-297.; ·Zbl 0854.35016
[49], On the geometry of metric measure spaces. I, Acta Math., 196 (2006), pp. 65-131.; ·Zbl 1105.53035
[50], On the geometry of metric measure spaces. II, Acta Math., 196 (2006), pp. 133-177.; ·Zbl 1106.53032
[51]C. Villani, Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.; ·Zbl 1156.53003
[52]N. Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal., 178 (2000), pp. 64-112.; ·Zbl 0979.46035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp