Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A-polynomial, B-model, and quantization.(English)Zbl 1309.81220

Summary: Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as \(\hslash \to 0\), and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial \(A(x, y)\), we provide a construction of its non-commutative counterpart \(\widehat{A}\left({\widehat{x},\widehat{y}} \right)\) using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing \(\widehat{A}\) that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T45 Topological field theories in quantum mechanics
81T75 Noncommutative geometry methods in quantum field theory
58J28 Eta-invariants, Chern-Simons invariants
81T70 Quantization in field theory; cohomological methods
14H81 Relationships between algebraic curves and physics

Cite

References:

[1]N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE]. ·Zbl 0996.81511
[2]N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2004) 831 [hep-th/0206161] [INSPIRE]. ·Zbl 1056.81068
[3]S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory and the A-polynomial, Commun. Math. Phys.255 (2005) 577 [hep-th/0306165] [INSPIRE]. ·Zbl 1115.57009 ·doi:10.1007/s00220-005-1312-y
[4]E. Brézin, C. Itzykson, G. Parisi and J. Zuber, Planar diagrams, Commun. Math. Phys.59 (1978) 35 [INSPIRE]. ·Zbl 0997.81548 ·doi:10.1007/BF01614153
[5]M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys.261 (2006) 451 [hep-th/0312085] [INSPIRE]. ·Zbl 1095.81049 ·doi:10.1007/s00220-005-1448-9
[6]R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP02 (2008) 106 [arXiv:0709.4446] [INSPIRE]. ·Zbl 07976865 ·doi:10.1088/1126-6708/2008/02/106
[7]M. Kashiwara, D-modules and microlocal calculus, Translation of Mathematical Monographs 217, American Mathematical Society, Providence U.S.A. (2003). ·Zbl 1017.32012
[8]M. Kashiwara and P. Schapira, Modules over deformation quantization algebroids: an overview, Lett. Math. Phys.88 (2009) 79. ·Zbl 1196.53054 ·doi:10.1007/s11005-009-0297-4
[9]M. Kontsevich, Holonomic D-modules and positive characteristic, Japan. J. Math.4 (2009) 1 [arXiv:1010.2908]. ·Zbl 1215.14014 ·doi:10.1007/s11537-009-0852-x
[10]R. Dijkgraaf, L. Hollands and P. Sulkowski, Quantum curves and D-modules, JHEP11 (2009) 047 [arXiv:0810.4157] [INSPIRE]. ·doi:10.1088/1126-6708/2009/11/047
[11]R. Dijkgraaf and H. Fuji, The volume conjecture and topological strings, Fortsch. Phys.57 (2009) 825 [arXiv:0903.2084] [INSPIRE]. ·Zbl 1210.81081 ·doi:10.1002/prop.200900067
[12]T. Dimofte, Quantum Riemann surfaces in Chern-Simons theory, arXiv:1102.4847 [INSPIRE]. ·Zbl 1304.81143
[13]B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, math-ph/0702045 [INSPIRE]. ·Zbl 1161.14026
[14]M. Mariño, Open string amplitudes and large order behavior in topological string theory, JHEP03 (2008) 060 [hep-th/0612127] [INSPIRE]. ·Zbl 07993914 ·doi:10.1088/1126-6708/2008/03/060
[15]V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys.287 (2009) 117 [arXiv:0709.1453] [INSPIRE]. ·Zbl 1178.81214 ·doi:10.1007/s00220-008-0620-4
[16]R. Dijkgraaf, H. Fuji and M. Manabe, The volume conjecture, perturbative knot invariants and recursion relations for topological strings, Nucl. Phys.B 849 (2011) 166 [arXiv:1010.4542] [INSPIRE]. ·Zbl 1215.81082 ·doi:10.1016/j.nuclphysb.2011.03.014
[17]B. Eynard and M. Mariño, A holomorphic and background independent partition function for matrix models and topological strings, J. Geom. Phys.61 (2011) 1181 [arXiv:0810.4273] [INSPIRE]. ·Zbl 1215.81084 ·doi:10.1016/j.geomphys.2010.11.012
[18]G. Borot and B. Eynard, Geometry of spectral curves and all order dispersive integrable system, arXiv:1110.4936. ·Zbl 1270.14017
[19]M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP02 (2004) 010 [hep-th/0211098] [INSPIRE]. ·doi:10.1088/1126-6708/2004/02/010
[20]B. Eynard, All orders asymptotic expansion of large partitions, J. Stat. Mech. (2008) P07023 [arXiv:0804.0381] [INSPIRE]. ·Zbl 1459.82002
[21]A. Klemm and P. Sulkowski, Seiberg-Witten theory and matrix models, Nucl. Phys.B 819 (2009) 400 [arXiv:0810.4944] [INSPIRE]. ·Zbl 1194.81211 ·doi:10.1016/j.nuclphysb.2009.04.004
[22]P. Sulkowski, Matrix models for 2*theories, Phys. Rev.D 80 (2009) 086006 [arXiv:0904.3064] [INSPIRE].
[23]B. Eynard, A.-K. Kashani-Poor and O. Marchal, A matrix model for the topological string I. Deriving the matrix model, arXiv:1003.1737 [INSPIRE]. ·Zbl 1408.81027
[24]B. Eynard, A.-K. Kashani-Poor and O. Marchal, A matrix model for the topological string II. The spectral curve and mirror geometry, arXiv:1007.2194 [INSPIRE]. ·Zbl 1260.81195
[25]H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev.D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].
[26]T. Dimofte, S. Gukov, J. Lenells and D. Zagier, Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Num. Theor. Phys.3 (2009) 363 [arXiv:0903.2472] [INSPIRE]. ·Zbl 1214.81151
[27]H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux compactifications, Lett. Math. Phys.74 (2005) 311 [hep-th/0502211] [INSPIRE]. ·Zbl 1101.81092 ·doi:10.1007/s11005-005-0022-x
[28]J. Evslin and R. Minasian, Topological strings live on attractive manifolds, arXiv:0804.0750 [INSPIRE].
[29]M. Mariño, S. Pasquetti and P. Putrov, Large-N duality beyond the genus expansion, JHEP07 (2010) 074 [arXiv:0911.4692] [INSPIRE]. ·Zbl 1290.81128 ·doi:10.1007/JHEP07(2010)074
[30]S. Gukov and H. Murakami, SL \((2, \mathbb{C} )\) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial, Lett. Math. Phys.86 (2008) 79 [math/0608324] [INSPIRE]. ·Zbl 1183.57012 ·doi:10.1007/s11005-008-0282-3
[31]A. Beilinson, Higher regulators and values of L-functions of curves, Funktsional. Anal. i Prilozhen.14 (1980) 46 [Funct. Anal. Appl.14 (1980) 116]. ·Zbl 0588.14013
[32]S. Bloch, The dilogarithm and extensions of lie algebras, in Algebraic K-theory, Evanston 1980, Lect. Notes Math.854, Springer, Berlin Heidelberg Germany and New York U.S.A. (1981), pg. 1. ·Zbl 0469.14009
[33]W. Li and Q. Wang, On the generalized volume conjecture and regulator, math.GT/0610745. ·Zbl 1221.57021
[34]D.W. Boyd, F. Rodriguez-Villegas and N.M. Dunfield, Mahler’s measure and the dilogarithm (II), math.NT/0308041. ·Zbl 1032.11028
[35]T. Dimofte, S. Gukov, P. Sulkowski and D. Zagier, Quantum curves and algebraic K-theory, to appear (2011).
[36]G. Akemann, Higher genus correlators for the Hermitian matrix model with multiple cuts, Nucl. Phys.B 482 (1996) 403 [hep-th/9606004] [INSPIRE]. ·Zbl 0925.81311 ·doi:10.1016/S0550-3213(96)00542-1
[37]G. Bonnet, F. David and B. Eynard, Breakdown of universality in multicut matrix models, J. Phys.A 33 (2000) 6739 [cond-mat/0003324] [INSPIRE]. ·Zbl 0963.82021
[38]C. Frohman, R. Gelca and W. Lofaro, The A-polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc.354 (2002) 735 [math.QA/9812048]. ·Zbl 0980.57002 ·doi:10.1090/S0002-9947-01-02889-6
[39]S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol. Monographs7 (2004) 291 [math.GT/0306230]. ·Zbl 1080.57014 ·doi:10.2140/gtm.2004.7.291
[40]N. Dunfield, Examples of non-trivial roots of unity at ideal points of hyperbolic 3-manifolds, Topology38 (1999) 457 [math.GT/9801064]. ·Zbl 0923.57004 ·doi:10.1016/S0040-9383(98)00035-4
[41]F.R. Villegas, Modular Mahler measures I, in Topics in Number Theory, S.D. Ahlgren, G.E. Andrews and K. Ono eds., Kluwer, Dordrecht The Netherlands (1999), pg. 17. ·Zbl 0980.11026
[42]J. Milnor, A duality theorem for Reidemeister torsion, Ann. Math.76 (1962) 137. ·Zbl 0108.36502 ·doi:10.2307/1970268
[43]V. Turaev, Reidemeister torsion in knot theory, Russ. Math. Surveys41 (1986) 119. ·Zbl 0602.57005 ·doi:10.1070/RM1986v041n01ABEH003204
[44]S. Friedl and S. Vidussi, A survey of twisted Alexander polynomials, in Proceedings of the conference ‘The mathematics of knots: theory and application’, Heidelberg Germany December 2008 [arXiv:0905.0591]. ·Zbl 1154.57021
[45]J. Porti, Torsion de Reidemesiter poir les variétés hyperboliques (in French), Mem. Amer. Math. Soc.128 no. 612 (1997) 1. ·Zbl 0881.57020
[46]D. Cooper, M. Culler, H. Gillet and D. Long, Plane curves associated to character varieties of 3-manifolds, Invent. Math.118 (1994) 47. ·Zbl 0842.57013 ·doi:10.1007/BF01231526
[47]J.M. Maldacena, G.W. Moore, N. Seiberg and D. Shih, Exact vs. semiclassical target space of the minimal string, JHEP10 (2004) 020 [hep-th/0408039] [INSPIRE]. ·doi:10.1088/1126-6708/2004/10/020
[48]P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices, Phys. Rept.254 (1995) 1 [hep-th/9306153] [INSPIRE]. ·doi:10.1016/0370-1573(94)00084-G
[49]M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys.254 (2005) 425 [hep-th/0305132] [INSPIRE]. ·Zbl 1114.81076 ·doi:10.1007/s00220-004-1162-z
[50]V. Bouchard and P. Sulkowski, Topological recursion and mirror curves, arXiv:1105.2052 [INSPIRE]. ·Zbl 1276.14054
[51]J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math.9 (1970) 318. ·Zbl 0199.55501 ·doi:10.1007/BF01425486
[52]M. Aganagic, M.C. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum geometry of refined topological strings, arXiv:1105.0630 [INSPIRE]. ·Zbl 1397.83117
[53]C. Beem, T. Dimofte and L. Hollands, private communication (2011).
[54]N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE]. ·Zbl 1214.83049
[55]T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys.98 (2011) 225 [arXiv:1006.0977] [INSPIRE]. ·Zbl 1239.81057 ·doi:10.1007/s11005-011-0531-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp