[1] | N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE]. ·Zbl 0996.81511 |
[2] | N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2004) 831 [hep-th/0206161] [INSPIRE]. ·Zbl 1056.81068 |
[3] | S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory and the A-polynomial, Commun. Math. Phys.255 (2005) 577 [hep-th/0306165] [INSPIRE]. ·Zbl 1115.57009 ·doi:10.1007/s00220-005-1312-y |
[4] | E. Brézin, C. Itzykson, G. Parisi and J. Zuber, Planar diagrams, Commun. Math. Phys.59 (1978) 35 [INSPIRE]. ·Zbl 0997.81548 ·doi:10.1007/BF01614153 |
[5] | M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys.261 (2006) 451 [hep-th/0312085] [INSPIRE]. ·Zbl 1095.81049 ·doi:10.1007/s00220-005-1448-9 |
[6] | R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP02 (2008) 106 [arXiv:0709.4446] [INSPIRE]. ·Zbl 07976865 ·doi:10.1088/1126-6708/2008/02/106 |
[7] | M. Kashiwara, D-modules and microlocal calculus, Translation of Mathematical Monographs 217, American Mathematical Society, Providence U.S.A. (2003). ·Zbl 1017.32012 |
[8] | M. Kashiwara and P. Schapira, Modules over deformation quantization algebroids: an overview, Lett. Math. Phys.88 (2009) 79. ·Zbl 1196.53054 ·doi:10.1007/s11005-009-0297-4 |
[9] | M. Kontsevich, Holonomic D-modules and positive characteristic, Japan. J. Math.4 (2009) 1 [arXiv:1010.2908]. ·Zbl 1215.14014 ·doi:10.1007/s11537-009-0852-x |
[10] | R. Dijkgraaf, L. Hollands and P. Sulkowski, Quantum curves and D-modules, JHEP11 (2009) 047 [arXiv:0810.4157] [INSPIRE]. ·doi:10.1088/1126-6708/2009/11/047 |
[11] | R. Dijkgraaf and H. Fuji, The volume conjecture and topological strings, Fortsch. Phys.57 (2009) 825 [arXiv:0903.2084] [INSPIRE]. ·Zbl 1210.81081 ·doi:10.1002/prop.200900067 |
[12] | T. Dimofte, Quantum Riemann surfaces in Chern-Simons theory, arXiv:1102.4847 [INSPIRE]. ·Zbl 1304.81143 |
[13] | B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, math-ph/0702045 [INSPIRE]. ·Zbl 1161.14026 |
[14] | M. Mariño, Open string amplitudes and large order behavior in topological string theory, JHEP03 (2008) 060 [hep-th/0612127] [INSPIRE]. ·Zbl 07993914 ·doi:10.1088/1126-6708/2008/03/060 |
[15] | V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys.287 (2009) 117 [arXiv:0709.1453] [INSPIRE]. ·Zbl 1178.81214 ·doi:10.1007/s00220-008-0620-4 |
[16] | R. Dijkgraaf, H. Fuji and M. Manabe, The volume conjecture, perturbative knot invariants and recursion relations for topological strings, Nucl. Phys.B 849 (2011) 166 [arXiv:1010.4542] [INSPIRE]. ·Zbl 1215.81082 ·doi:10.1016/j.nuclphysb.2011.03.014 |
[17] | B. Eynard and M. Mariño, A holomorphic and background independent partition function for matrix models and topological strings, J. Geom. Phys.61 (2011) 1181 [arXiv:0810.4273] [INSPIRE]. ·Zbl 1215.81084 ·doi:10.1016/j.geomphys.2010.11.012 |
[18] | G. Borot and B. Eynard, Geometry of spectral curves and all order dispersive integrable system, arXiv:1110.4936. ·Zbl 1270.14017 |
[19] | M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP02 (2004) 010 [hep-th/0211098] [INSPIRE]. ·doi:10.1088/1126-6708/2004/02/010 |
[20] | B. Eynard, All orders asymptotic expansion of large partitions, J. Stat. Mech. (2008) P07023 [arXiv:0804.0381] [INSPIRE]. ·Zbl 1459.82002 |
[21] | A. Klemm and P. Sulkowski, Seiberg-Witten theory and matrix models, Nucl. Phys.B 819 (2009) 400 [arXiv:0810.4944] [INSPIRE]. ·Zbl 1194.81211 ·doi:10.1016/j.nuclphysb.2009.04.004 |
[22] | P. Sulkowski, Matrix models for 2*theories, Phys. Rev.D 80 (2009) 086006 [arXiv:0904.3064] [INSPIRE]. |
[23] | B. Eynard, A.-K. Kashani-Poor and O. Marchal, A matrix model for the topological string I. Deriving the matrix model, arXiv:1003.1737 [INSPIRE]. ·Zbl 1408.81027 |
[24] | B. Eynard, A.-K. Kashani-Poor and O. Marchal, A matrix model for the topological string II. The spectral curve and mirror geometry, arXiv:1007.2194 [INSPIRE]. ·Zbl 1260.81195 |
[25] | H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev.D 70 (2004) 106007 [hep-th/0405146] [INSPIRE]. |
[26] | T. Dimofte, S. Gukov, J. Lenells and D. Zagier, Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Num. Theor. Phys.3 (2009) 363 [arXiv:0903.2472] [INSPIRE]. ·Zbl 1214.81151 |
[27] | H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux compactifications, Lett. Math. Phys.74 (2005) 311 [hep-th/0502211] [INSPIRE]. ·Zbl 1101.81092 ·doi:10.1007/s11005-005-0022-x |
[28] | J. Evslin and R. Minasian, Topological strings live on attractive manifolds, arXiv:0804.0750 [INSPIRE]. |
[29] | M. Mariño, S. Pasquetti and P. Putrov, Large-N duality beyond the genus expansion, JHEP07 (2010) 074 [arXiv:0911.4692] [INSPIRE]. ·Zbl 1290.81128 ·doi:10.1007/JHEP07(2010)074 |
[30] | S. Gukov and H. Murakami, SL \((2, \mathbb{C} )\) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial, Lett. Math. Phys.86 (2008) 79 [math/0608324] [INSPIRE]. ·Zbl 1183.57012 ·doi:10.1007/s11005-008-0282-3 |
[31] | A. Beilinson, Higher regulators and values of L-functions of curves, Funktsional. Anal. i Prilozhen.14 (1980) 46 [Funct. Anal. Appl.14 (1980) 116]. ·Zbl 0588.14013 |
[32] | S. Bloch, The dilogarithm and extensions of lie algebras, in Algebraic K-theory, Evanston 1980, Lect. Notes Math.854, Springer, Berlin Heidelberg Germany and New York U.S.A. (1981), pg. 1. ·Zbl 0469.14009 |
[33] | W. Li and Q. Wang, On the generalized volume conjecture and regulator, math.GT/0610745. ·Zbl 1221.57021 |
[34] | D.W. Boyd, F. Rodriguez-Villegas and N.M. Dunfield, Mahler’s measure and the dilogarithm (II), math.NT/0308041. ·Zbl 1032.11028 |
[35] | T. Dimofte, S. Gukov, P. Sulkowski and D. Zagier, Quantum curves and algebraic K-theory, to appear (2011). |
[36] | G. Akemann, Higher genus correlators for the Hermitian matrix model with multiple cuts, Nucl. Phys.B 482 (1996) 403 [hep-th/9606004] [INSPIRE]. ·Zbl 0925.81311 ·doi:10.1016/S0550-3213(96)00542-1 |
[37] | G. Bonnet, F. David and B. Eynard, Breakdown of universality in multicut matrix models, J. Phys.A 33 (2000) 6739 [cond-mat/0003324] [INSPIRE]. ·Zbl 0963.82021 |
[38] | C. Frohman, R. Gelca and W. Lofaro, The A-polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc.354 (2002) 735 [math.QA/9812048]. ·Zbl 0980.57002 ·doi:10.1090/S0002-9947-01-02889-6 |
[39] | S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol. Monographs7 (2004) 291 [math.GT/0306230]. ·Zbl 1080.57014 ·doi:10.2140/gtm.2004.7.291 |
[40] | N. Dunfield, Examples of non-trivial roots of unity at ideal points of hyperbolic 3-manifolds, Topology38 (1999) 457 [math.GT/9801064]. ·Zbl 0923.57004 ·doi:10.1016/S0040-9383(98)00035-4 |
[41] | F.R. Villegas, Modular Mahler measures I, in Topics in Number Theory, S.D. Ahlgren, G.E. Andrews and K. Ono eds., Kluwer, Dordrecht The Netherlands (1999), pg. 17. ·Zbl 0980.11026 |
[42] | J. Milnor, A duality theorem for Reidemeister torsion, Ann. Math.76 (1962) 137. ·Zbl 0108.36502 ·doi:10.2307/1970268 |
[43] | V. Turaev, Reidemeister torsion in knot theory, Russ. Math. Surveys41 (1986) 119. ·Zbl 0602.57005 ·doi:10.1070/RM1986v041n01ABEH003204 |
[44] | S. Friedl and S. Vidussi, A survey of twisted Alexander polynomials, in Proceedings of the conference ‘The mathematics of knots: theory and application’, Heidelberg Germany December 2008 [arXiv:0905.0591]. ·Zbl 1154.57021 |
[45] | J. Porti, Torsion de Reidemesiter poir les variétés hyperboliques (in French), Mem. Amer. Math. Soc.128 no. 612 (1997) 1. ·Zbl 0881.57020 |
[46] | D. Cooper, M. Culler, H. Gillet and D. Long, Plane curves associated to character varieties of 3-manifolds, Invent. Math.118 (1994) 47. ·Zbl 0842.57013 ·doi:10.1007/BF01231526 |
[47] | J.M. Maldacena, G.W. Moore, N. Seiberg and D. Shih, Exact vs. semiclassical target space of the minimal string, JHEP10 (2004) 020 [hep-th/0408039] [INSPIRE]. ·doi:10.1088/1126-6708/2004/10/020 |
[48] | P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices, Phys. Rept.254 (1995) 1 [hep-th/9306153] [INSPIRE]. ·doi:10.1016/0370-1573(94)00084-G |
[49] | M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys.254 (2005) 425 [hep-th/0305132] [INSPIRE]. ·Zbl 1114.81076 ·doi:10.1007/s00220-004-1162-z |
[50] | V. Bouchard and P. Sulkowski, Topological recursion and mirror curves, arXiv:1105.2052 [INSPIRE]. ·Zbl 1276.14054 |
[51] | J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math.9 (1970) 318. ·Zbl 0199.55501 ·doi:10.1007/BF01425486 |
[52] | M. Aganagic, M.C. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum geometry of refined topological strings, arXiv:1105.0630 [INSPIRE]. ·Zbl 1397.83117 |
[53] | C. Beem, T. Dimofte and L. Hollands, private communication (2011). |
[54] | N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE]. ·Zbl 1214.83049 |
[55] | T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys.98 (2011) 225 [arXiv:1006.0977] [INSPIRE]. ·Zbl 1239.81057 ·doi:10.1007/s11005-011-0531-8 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.