[1] | Harrison, R.; Fann, G.; Yanai, T.; Gan, Z.; Beylkin, G., Multiresolution quantum chemistry: Basic theory and initial applications, J. Chem. Phys., 121, 23, 11587-11598 (2004) |
[2] | Khoromskij, B.; Khoromskaia, V., Multigrid accelerated tensor approximation of function related multidimensional arrays, SIAM J. Sci. Comput., 31, 3002-3026 (2009) ·Zbl 1197.65215 |
[3] | Khoromskij, B., On tensor approximation of Green iterations for Kohn-Sham equations, Comput. Vis. Sci., 11, 259-271 (2008) ·Zbl 1522.65249 |
[4] | Hackbusch, W.; Khoromskij, B., Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. I. Separable approximation of multi-variate functions, Computing, 76, 3-4, 177-202 (2006) ·Zbl 1087.65049 |
[5] | Khoromskij, B., Fast and accurate tensor approximation of multivariate convolution with linear scaling in dimension, J. Comput. Appl. Math., 234, 3122-3139 (2010) ·Zbl 1197.65216 |
[6] | Khoromskij, B.; Khoromskaia, V., Low rank Tucker-type tensor approximation to classical potentials, Cent. Eur. J. Math., 5, 3, 1-28 (2007) ·Zbl 1130.65060 |
[7] | Langer, U.; Steinbach, O., Coupled Finite and Boundary Element Domain Decomposition Method, Lecture Notes in Applied and Computational Mechanics, vol. 29 (2007), pp. 29-59 |
[8] | Khoromskij, B.; Khoromskaia, V.; Flad, H., Numerical solution of the Hartree-Fock equation in multilevel tensor-structured format, SIAM J. Sci. Comput., 33, 1, 45-65 (2011) ·Zbl 1227.65113 |
[9] | Le Bris, C., Computational chemistry from the perspective of numerical analysis, Acta Numer., 363-444 (2005) ·Zbl 1119.65390 |
[10] | Oseledets, I. V., Approximation of \(2^d \times 2^d\) matrices using tensor decomposition, SIAM J. Matrix Anal. Appl., 31, 2130-2145 (2010) ·Zbl 1200.15005 |
[11] | Khoromskij, B., \(O(d \log N)\)-quantics approximation of \(N\)-d tensors in high-dimensional numerical modelling, J. Constr. Approx., 34, 2, 257-289 (2011) ·Zbl 1228.65069 |
[12] | Khoromskij, B. N.; Oseledets, I. V., Quantics-TT approximation of elliptic solution operators in higher dimensions, Russ. J. Numer. Anal. Math. Modelling, 26, 3, 303-322 (2011) ·Zbl 1221.65288 |
[13] | Gavrilyuk, I.; Hackbusch, W.; Khoromskij, B., Data-sparse approximation to a class of operator-valued functions, Math. Comp., 74, 681-708 (2005) ·Zbl 1066.65060 |
[14] | Gavrilyuk, I.; Hackbusch, W.; Khoromskij, B., Tensor-product approximation to elliptic and parabolic solution operators in higher dimensions, Computing, 74, 131-157 (2005) ·Zbl 1071.65032 |
[15] | Stenger, F., Numerical Methods Based on Sinc and Analytic Functions (1993), Springer-Verlag ·Zbl 0803.65141 |
[16] | Braess, D.; Hackbusch, W., Approximation of \(1 / x\) by exponential sums in \([1, \infty]\), IMA J. Numer. Anal., 25, 4, 685 (2005) ·Zbl 1082.65025 |
[17] | Khoromskij, B.; Khoromskaia, V.; Chinnamsetty, S.; Flad, H.-J., Tensor decomposition in electronic structure calculations on 3d cartesian grids, J. Comput. Phys., 228, 5749-5762 (2009) ·Zbl 1171.82017 |
[18] | Hackbusch, W.; Khoromskij, B., Tensor-product approximation to operators and functions in high dimension, J. Complexity, 23, 1, 697-714 (2007) ·Zbl 1141.65032 |
[19] | Braess, D.; Hackbusch, W., On the efficient computation of high-dimensional integrals and the approximation by exponential sums, (Multiscale, Nonlinear and Adaptive Approximation (2009)), 39-74 ·Zbl 1190.65036 |
[20] | Lund, J.; Bowers, K., Sinc Methods for Quadrature and Differential Equations (1992), SIAM: SIAM Philadelphia ·Zbl 0753.65081 |
[21] | V. Khoromskaia, Numerical solution of the Hartree-Fock equation by multilevel tensor-structured methods, PhD thesis, TU Berlin, 2011.; V. Khoromskaia, Numerical solution of the Hartree-Fock equation by multilevel tensor-structured methods, PhD thesis, TU Berlin, 2011. ·Zbl 1227.65113 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.