Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Low-rank quadrature-based tensor approximation of the Galerkin projected Newton/Yukawa kernels.(English)Zbl 1308.65213

Summary: Tensor-product approximation provides a convenient tool for efficient numerical treatment of high-dimensional problems that arise, in particular, in electronic structure calculations in \(\mathbb R^{d}\). In this work we apply tensor approximation to the Galerkin representation of the Newton and Yukawa potentials for a set of tensor-product, piecewise polynomial basis functions. To construct tensor-structured representations, we make use of the well-known Gaussian transform of the potentials, and then approximate the resulting univariate integral in \(\mathbb R\) by special sinc-quadratures. The novelty of the approach lies on the optimisation of the quadrature parameters that allows to reduce dramatically the initial tensor-rank obtained by the standard sinc-quadratures. The numerical experiments show that this approach gives tensor-ranks close to the optimal in 3D computations on large spatial grids and with linear complexity in the univariate grid size. Particularly, this scheme becomes attractive for the multiple calculation of the Yukawa potential when the exponents in Gaussian functions vary during the computational process.

MSC:

65R10 Numerical methods for integral transforms
65D30 Numerical integration

Cite

References:

[1]Harrison, R.; Fann, G.; Yanai, T.; Gan, Z.; Beylkin, G., Multiresolution quantum chemistry: Basic theory and initial applications, J. Chem. Phys., 121, 23, 11587-11598 (2004)
[2]Khoromskij, B.; Khoromskaia, V., Multigrid accelerated tensor approximation of function related multidimensional arrays, SIAM J. Sci. Comput., 31, 3002-3026 (2009) ·Zbl 1197.65215
[3]Khoromskij, B., On tensor approximation of Green iterations for Kohn-Sham equations, Comput. Vis. Sci., 11, 259-271 (2008) ·Zbl 1522.65249
[4]Hackbusch, W.; Khoromskij, B., Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. I. Separable approximation of multi-variate functions, Computing, 76, 3-4, 177-202 (2006) ·Zbl 1087.65049
[5]Khoromskij, B., Fast and accurate tensor approximation of multivariate convolution with linear scaling in dimension, J. Comput. Appl. Math., 234, 3122-3139 (2010) ·Zbl 1197.65216
[6]Khoromskij, B.; Khoromskaia, V., Low rank Tucker-type tensor approximation to classical potentials, Cent. Eur. J. Math., 5, 3, 1-28 (2007) ·Zbl 1130.65060
[7]Langer, U.; Steinbach, O., Coupled Finite and Boundary Element Domain Decomposition Method, Lecture Notes in Applied and Computational Mechanics, vol. 29 (2007), pp. 29-59
[8]Khoromskij, B.; Khoromskaia, V.; Flad, H., Numerical solution of the Hartree-Fock equation in multilevel tensor-structured format, SIAM J. Sci. Comput., 33, 1, 45-65 (2011) ·Zbl 1227.65113
[9]Le Bris, C., Computational chemistry from the perspective of numerical analysis, Acta Numer., 363-444 (2005) ·Zbl 1119.65390
[10]Oseledets, I. V., Approximation of \(2^d \times 2^d\) matrices using tensor decomposition, SIAM J. Matrix Anal. Appl., 31, 2130-2145 (2010) ·Zbl 1200.15005
[11]Khoromskij, B., \(O(d \log N)\)-quantics approximation of \(N\)-d tensors in high-dimensional numerical modelling, J. Constr. Approx., 34, 2, 257-289 (2011) ·Zbl 1228.65069
[12]Khoromskij, B. N.; Oseledets, I. V., Quantics-TT approximation of elliptic solution operators in higher dimensions, Russ. J. Numer. Anal. Math. Modelling, 26, 3, 303-322 (2011) ·Zbl 1221.65288
[13]Gavrilyuk, I.; Hackbusch, W.; Khoromskij, B., Data-sparse approximation to a class of operator-valued functions, Math. Comp., 74, 681-708 (2005) ·Zbl 1066.65060
[14]Gavrilyuk, I.; Hackbusch, W.; Khoromskij, B., Tensor-product approximation to elliptic and parabolic solution operators in higher dimensions, Computing, 74, 131-157 (2005) ·Zbl 1071.65032
[15]Stenger, F., Numerical Methods Based on Sinc and Analytic Functions (1993), Springer-Verlag ·Zbl 0803.65141
[16]Braess, D.; Hackbusch, W., Approximation of \(1 / x\) by exponential sums in \([1, \infty]\), IMA J. Numer. Anal., 25, 4, 685 (2005) ·Zbl 1082.65025
[17]Khoromskij, B.; Khoromskaia, V.; Chinnamsetty, S.; Flad, H.-J., Tensor decomposition in electronic structure calculations on 3d cartesian grids, J. Comput. Phys., 228, 5749-5762 (2009) ·Zbl 1171.82017
[18]Hackbusch, W.; Khoromskij, B., Tensor-product approximation to operators and functions in high dimension, J. Complexity, 23, 1, 697-714 (2007) ·Zbl 1141.65032
[19]Braess, D.; Hackbusch, W., On the efficient computation of high-dimensional integrals and the approximation by exponential sums, (Multiscale, Nonlinear and Adaptive Approximation (2009)), 39-74 ·Zbl 1190.65036
[20]Lund, J.; Bowers, K., Sinc Methods for Quadrature and Differential Equations (1992), SIAM: SIAM Philadelphia ·Zbl 0753.65081
[21]V. Khoromskaia, Numerical solution of the Hartree-Fock equation by multilevel tensor-structured methods, PhD thesis, TU Berlin, 2011.; V. Khoromskaia, Numerical solution of the Hartree-Fock equation by multilevel tensor-structured methods, PhD thesis, TU Berlin, 2011. ·Zbl 1227.65113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp