[1] | Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage (1925), F. Duticke: F. Duticke Vienna ·JFM 51.0655.07 |
[2] | Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) ·JFM 67.0837.01 |
[3] | Coussy, O., Mechanics of Porous Continua (1995), J. Wiley & Sons: J. Wiley & Sons New York, NY ·Zbl 0838.73001 |
[4] | Pao, W. K.S.; Lewis, R. W.; Masters, I., A fully coupled hydro-thermo-poro-mechanical model for black oil reservoir simulation, Int. J. Numer. Anal. Meth. Geomech., 25, 1229-1256 (2001) ·Zbl 1016.74023 |
[5] | Ferronato, M.; Gambolati, G.; Teatini, P.; Baù, D., Radioactive marker measurements in heterogeneous reservoirs: numerical study, Int. J. Geomech., 4, 79-92 (2004) |
[6] | Yin, S.; Dusseault, M. B.; Rothenburg, L., Thermal reservoir modeling in petroleum geomechanics, Int. J. Numer. Anal. Meth. Geomech., 33, 449-485 (2009) ·Zbl 1273.74092 |
[7] | Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M., Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend, Water Resour. Res., 42 (2006) |
[8] | Hudson, J.; Stephansson, O.; Andersson, J.; Tsang, C. F.; Ling, L., Coupled T-H-M issues related to radioactive waste repository design and performance, Int. J. Rock Mech. Mining Sci., 38, 143-161 (2001) |
[9] | Roose, T.; Netti, P.; Munn, L.; Boucher, Y.; Jain, R., Solid stress generated by spheroid growth estimated using a linear poroelastic model, Microvasc. Res., 66, 204-212 (2003) |
[10] | Swan, C.; Lakes, R.; Brand, R.; Stewart, K., Micromechanically based poroelastic modeling of fluid flow in Haversian bone, J. Biomech. Eng., 125, 25-37 (2003) |
[11] | Ferronato, M.; Gambolati, G.; Teatini, P., Ill-conditioning of finite element poroelasticity equations, Int. J. Solids Struct., 38, 5995-6014 (2001) ·Zbl 1075.74643 |
[12] | Bergamaschi, L.; Ferronato, M.; Gambolati, G., Mixed constraint preconditioners for the iterative solution to FE coupled consolidation equations, J. Comput. Phys., 227, 9885-9897 (2008) ·Zbl 1154.65015 |
[13] | Ferronato, M.; Pini, G.; Gambolati, G., The role of preconditioning in the solution to FE coupled consolidation equations by Krylov subspace methods, Int. J. Numer. Anal. Meth. Geomech., 33, 405-423 (2009) ·Zbl 1272.74610 |
[14] | Wheeler, M. F.; Gai, X., Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity, Numer. Meth. Part. D. E., 23, 785-797 (2007) ·Zbl 1115.74054 |
[15] | Idelson, S. R.; Heinrich, J. C.; Onate, E., Petrov-Galerkin methods for the transient advective-diffusive equation with sharp gradients, Int. J. Numer. Meth. Eng., 39, 1455-1473 (1996) ·Zbl 0869.76041 |
[16] | Vermeer, P. A.; Verruijt, A., An accuracy condition for consolidation by finite elements, Int. J. Numer. Anal. Meth. Geomech., 5, 1-14 (1981) ·Zbl 0456.73060 |
[17] | Reed, M. B., An investigation of numerical errors in the analysis of consolidation by finite elements, Int. J. Numer. Anal. Meth. Geomech., 8, 243-257 (1984) ·Zbl 0536.73089 |
[18] | Sandhu, R. S.; Liu, H.; Singh, K. J., Numerical performance of some finite element schemes for analysis of seepage in porous elastic media, Int. J. Numer. Anal. Meth. Geomech., 1, 177-194 (1977) ·Zbl 0366.65049 |
[19] | Murad, M. A.; Loula, A. F.D., On the stability and convergence of finite element approximations of Biot’s consolidation problem, Int. J. Numer. Meth. Eng., 37, 645-667 (1994) ·Zbl 0791.76047 |
[20] | Murad, M. A.; Loula, A. F.D., Improved accuracy in finite element analysis of Biot’s consolidation problem, Comput. Meth. Appl. Mech. Eng., 95, 359-382 (1992) ·Zbl 0760.73068 |
[21] | Tchonkova, M.; Peters, J.; Sture, S., A new mixed finite element method for poro-elasticity, Int. J. Numer. Anal. Meth. Geomech., 32, 579-606 (2008) ·Zbl 1273.74550 |
[22] | Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous-in-time case, Comput. Geosci., 11, 131-144 (2007) ·Zbl 1117.74015 |
[23] | Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discret-in-time case, Comput. Geosci., 11, 145-158 (2007) ·Zbl 1117.74016 |
[24] | Phillips, P. J.; Wheeler, M. F., A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci., 12, 417-435 (2008) ·Zbl 1155.74048 |
[25] | Jha, B.; Juanes, R., A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech., 2, 139-153 (2007) |
[26] | R.W. Freund, N.M. Nachtingal, A new Krylov-subspace method for symmetric indefinite linear systems, in: Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, 1994, pp. 1253-1256.; R.W. Freund, N.M. Nachtingal, A new Krylov-subspace method for symmetric indefinite linear systems, in: Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, 1994, pp. 1253-1256. |
[27] | Roberts, J. E.; Thomas, J. M., Mixed and hybrid methods, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, vol. 2 (1991), North-Holland: North-Holland Amsterdam) ·Zbl 0875.65090 |
[28] | Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method (2000), Butterworth-Heinemann: Butterworth-Heinemann Oxford, UK ·Zbl 0991.74002 |
[29] | Toh, K. C.; Phoon, K. K., Comparison between iterative solution of symmetric and non-symmetric forms of Biot’s FEM equations using the generalized Jacobi preconditioner, Int. J. Numer. Anal. Meth. Geomech., 32, 1131-1146 (2008) ·Zbl 1273.74551 |
[30] | Ferronato, M.; Bergamaschi, L.; Gambolati, G., Performance and robustness of block constraint preconditioners in finite element coupled consolidation models, Int. J. Numer. Meth. Eng., 81, 381-402 (2010) ·Zbl 1183.74271 |
[31] | Wang, H. F., Theory of Linear Poroelasticity (2001), Princeton University Press: Princeton University Press Princeton, NJ |
[32] | Wang, S. J.; Hsu, K. C., The application of the first-order second-moment method to analyze poroelastic problems in heterogeneous porous media, J. Hydrol., 369, 209-221 (2009) |
[33] | Mandel, J., Consolidation des sols (étude mathématique), Géotechnique, 30, 287-289 (1953) |
[34] | Abousleiman, Y.; Cheng, A. H.D.; Cui, L.; Detournay, E.; Roegiers, J. C., Mandel’s problem revisited, Géotechnique, 46, 187-195 (1996) |
[35] | Cui, L.; Cheng, A. H.D.; Kaliakin, V. N.; Abousleiman, Y.; Roegiers, J. C., Finite element analyses of anisotropic poroelasticity: a generalized Mandel’s problem and an inclined borehole problem, Int. J. Numer. Anal. Meth. Geomech., 20, 381-401 (1996) ·Zbl 0859.73073 |
[36] | L. Bergamaschi, S. Mantica, Efficient algebraic solvers for mixed finite element models of porous media flows, in: A.A. Aldama et al. (Eds.), Proceedings of 11th International Conference on Computational Methods in Water Resources, Computational Mechanics and Elsevier Applied Sciences, Southampton, London, UK, 1996, pp. 481-488.; L. Bergamaschi, S. Mantica, Efficient algebraic solvers for mixed finite element models of porous media flows, in: A.A. Aldama et al. (Eds.), Proceedings of 11th International Conference on Computational Methods in Water Resources, Computational Mechanics and Elsevier Applied Sciences, Southampton, London, UK, 1996, pp. 481-488. |
[37] | Gambolati, G.; Gatto, P.; Freeze, R. A., Mathematical simulation of the subsidence of Venice: 2. Results, Water Resour. Res., 10, 563-577 (1974) |
[38] | Gambolati, G.; Ricceri, G.; Bertoni, W.; Brighenti, G.; Vuillermin, E., Mathematical simulation of the subsidence of Ravenna, Water Resour. Res., 27, 2899-2918 (1991) |
[39] | Verruijt, A., Elastic storage of aquifers, (De Wiest, R., Flow Through Porous Media (1969), Academic Press: Academic Press New York, NY), 331-376 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.