Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Singular values of products of random matrices and polynomial ensembles.(English)Zbl 1303.15045

G. Akemann, {J. R. Ipsen} andM. Kieburg [“Products of rectangular random matrices: singular values and progressive scattering”, Phys. Rev. E 88, Article ID 052118, 13 p. (2013)] showed recently that the squared singular values of a product of \(M\) complex Ginibre matrices are distributed according to a determinantal point process. The authors introduce the notion of a polynomial ensemble and show how their result can be interpreted as a transformation of polynomial ensembles. They also show that the squared singular values of the product of \(M-1\) complex Ginibre matrices with one truncated unitary matrix is a polynomial ensemble, and they derive a double integral representation for the correlation kernel associated with this ensemble. They use this to calculate the scaling limit at the hard edge, which turns out to be the same scaling limit as the one found byA. B. J. Kuijlaars andL. Zhang [Commun. Math. Phys. 332, No. 2, 759–781 (2014;Zbl 1303.15046)] for the squared singular values of a product of \(M\) complex Ginibre matrices. The final result is that these limiting kernels also appear as scaling limits for the biorthogonal ensembles ofA. Borodin [Nucl. Phys., B 536, No. 3, 704–732 (1999;Zbl 0948.82018)] with parameter \(\theta >0\), in case \(\theta\) or \(1/\theta\) is an integer. This further supports the conjecture that these kernels have a universal character.

MSC:

15B52 Random matrices (algebraic aspects)
44A15 Special integral transforms (Legendre, Hilbert, etc.)
60B20 Random matrices (probabilistic aspects)

Software:

DLMF

Cite

References:

[1]DOI: 10.1088/1751-8113/45/46/465201 ·Zbl 1261.15041 ·doi:10.1088/1751-8113/45/46/465201
[2]DOI: 10.1103/PhysRevE.88.052118 ·doi:10.1103/PhysRevE.88.052118
[3]DOI: 10.1088/1751-8113/46/27/275205 ·Zbl 1271.15022 ·doi:10.1088/1751-8113/46/27/275205
[4]DOI: 10.1214/009117905000000233 ·Zbl 1086.15022 ·doi:10.1214/009117905000000233
[5]DOI: 10.1090/noti1016 ·Zbl 1322.33001 ·doi:10.1090/noti1016
[6]DOI: 10.1007/s00220-013-1833-8 ·Zbl 1303.82018 ·doi:10.1007/s00220-013-1833-8
[7]DOI: 10.1016/S0550-3213(98)00642-7 ·Zbl 0948.82018 ·doi:10.1016/S0550-3213(98)00642-7
[8]DOI: 10.1103/PhysRevE.82.061114 ·doi:10.1103/PhysRevE.82.061114
[9]Deift P., Courant Lecture Notes in Mathematics 18, in: Random Matrix Theory: Invariant Ensembles and Universality (2009) ·doi:10.1090/cln/018
[10]DOI: 10.1017/S0962492904000236 ·Zbl 1162.15014 ·doi:10.1017/S0962492904000236
[11]DOI: 10.1515/9781400835416 ·doi:10.1515/9781400835416
[12]Gorenflo R., Fract. Calc. Appl. Anal. 2 pp 383– (1999)
[13]DOI: 10.1016/S0377-0427(00)00288-0 ·Zbl 0973.35012 ·doi:10.1016/S0377-0427(00)00288-0
[14]DOI: 10.2307/2372387 ·Zbl 0072.01901 ·doi:10.2307/2372387
[15]DOI: 10.1103/PhysRevE.89.032106 ·doi:10.1103/PhysRevE.89.032106
[16]DOI: 10.1063/1.524438 ·Zbl 0997.81549 ·doi:10.1063/1.524438
[17]DOI: 10.1007/s00440-008-0146-x ·Zbl 1162.60005 ·doi:10.1007/s00440-008-0146-x
[18]DOI: 10.1214/154957805100000177 ·Zbl 1189.60024 ·doi:10.1214/154957805100000177
[19]Luke Y. L., Mathematics in Science and Engineering 53, in: The Special Functions and Their Approximations (1969) ·Zbl 0193.01701
[20]DOI: 10.1142/3438 ·doi:10.1142/3438
[21]DOI: 10.1088/0305-4470/28/5/003 ·doi:10.1088/0305-4470/28/5/003
[22]DOI: 10.1142/S2010326314500038 ·Zbl 1288.30033 ·doi:10.1142/S2010326314500038
[23]Olver F. W. J., NIST Handbook of Mathematical Functions (2010) ·Zbl 1198.00002
[24]DOI: 10.1103/PhysRevE.83.061118 ·doi:10.1103/PhysRevE.83.061118
[25]DOI: 10.1007/BF02099779 ·Zbl 0808.35145 ·doi:10.1007/BF02099779
[26]DOI: 10.1063/1.4818978 ·Zbl 1305.15080 ·doi:10.1063/1.4818978
[27]DOI: 10.1109/18.978730 ·Zbl 1071.94503 ·doi:10.1109/18.978730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp