[1] | Karimi-Fard, M.; Firoozabadi, A., Numerical simulation of water injection in 2D fractured media using discrete-fracture model, SPE Resour. Eval. Eng., 4, 117-126 (2003) |
[3] | Barrenblatt (1986), Petroleum Industry Press: Petroleum Industry Press Beijing, Translated by Huang Xitao, pp. 48-60 |
[4] | Juanes, R.; Patzek, T. W., A variational multiscale finite element method for multiphase flow in porous media, Finite Elem. Anal. Des., 41, 7-8, 763-777 (2005) |
[6] | Lemonnier, P.; Bourbiaux, B., Simulation of naturally fractured reservoirs—state of the art-part 1 matrix-fracture transfers and typical features of numerical studies, Oil Gas Sci. Technol. Rev. IFP, 65, 263-286 (2010) |
[7] | Ghorayeb, K.; Firoozabadi, A., Numerical study of natural convection and diffusion in fractured porous media, SPE J., 5, 12-20 (2000) |
[8] | Huang, J.; Yao, Y. Y.; Wang, Chin. J. Comput. Phys., 28, 148-156 (2011), in Chinese |
[9] | Hoteit, H.; Firoozabadi, A., Adv. Water Resour., 31, 891-905 (2008) |
[10] | Hauge, V. L.; Aarnes, J. E., Modeling of two-phase flow in fractured porous media on unstructured non-uniformly coarsened grids, Transp. Porous Media, 77, 373-398 (2009) |
[11] | Noorishad, J.; Mehran, M., An upstream finite element method for solution of transient transport equation in fractured porous media, Water Resour. Res., 18, 3, 588-596 (1982) |
[12] | Baca, R. G.; Arnett, R. C.; Langford, D. W., Modeling fluid flow in fractured-porous rock masses by finite element techniques, Int. J. Numer. Methods Fluids, 4, 4, 337-348 (1984) ·Zbl 0579.76095 |
[14] | Kim, J. G.; Deo, M. D., Finite element, discrete-fracture model for multiphase flow in porous media, AIChE J., 1120-1130 (2000) |
[15] | Huang, Z. Q.; Yao, J.; Wang, Y. Y., Numerical study on two-phase flow through fractured porous media, Sci. China Tech. Sci., 54, 2412-2420 (2011) ·Zbl 1237.76194 |
[17] | Monteagudo, J. E.P.; Firoozabadi, A., Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media, Water Resour. Res., 40, W07405 (2004) |
[18] | Durlofsky, L. J., Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27, 699-708 (1991) |
[19] | Efendiev, Y.; Hou, T.; Ginting, V., Multiscale finite element methods for nonlinear problems and their applications, Commun. Math. Sci., 2, 553-589 (2004) ·Zbl 1083.65105 |
[20] | Huang, Z. Q.; Yao, J.; Li, Y. J., Numerical calculation of equivalent permeability tensor for fractured Vuggy porous media based on homogenization theory, Commun. Comput. Phys., 9, 180-204 (2011) ·Zbl 1284.76351 |
[21] | Weinan, E.; Engquist, B., The heterogeneous multi-scale methods, Commun. Math. Sci., 1, 1, 87-133 (2003) ·Zbl 1093.35012 |
[22] | Chen, Y.; Durlofsky, L. J., Adaptive local-global upscaling for general flow scenarios in heterogeneous formations, Transp. Porous Media, 62, 157-185 (2006) |
[23] | Wu, X. H.; Efendiev, Y.; Hou, T. Y., Analysis of upscaling absolute permeability, Discrete Contin. Dyn. Syst. Ser. B, 2, 185-204 (2002) ·Zbl 1162.65327 |
[24] | Hou, T. Y.; Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 1, 169-189 (1997) ·Zbl 0880.73065 |
[25] | Hughes, T. J.R.; Feijoo, G. R.; Mazzei, L., The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 3-24 (1998) ·Zbl 1017.65525 |
[26] | Aarnes, J. E.; Krogstad, S.; Lie, K. A., Multiscale mixed/mimetic finite-element methods on corner-point grids, Comput. Geosci., 12, 3, 297-315 (2008) ·Zbl 1259.76065 |
[27] | Lee, S. H.; Wolfsteiner, C. W.; Tchelepi, H., Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three phase flow with gravity, Comput. Geosci., 12, 3, 351-366 (2008) ·Zbl 1259.76049 |
[29] | Kippe, V.; Aarnes, J. E.; Lie, K.-A., A comparison of multiscale methods for elliptic problems in porous media flow, Comput. Geosci., 12, 3, 377-398 (2008) ·Zbl 1259.76047 |
[30] | Chen, Z.; Hou, T. Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 541-576 (2002) ·Zbl 1017.65088 |
[31] | Jenny, P.; Lee, S. H.; Tchelepi, H., Multi-scale finite volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67 (2003) ·Zbl 1047.76538 |
[32] | Jenny, P.; Lee, S. H.; Tchelepi, H., Adaptive multi-scale finite volume method for multi-phase flow and transport in porous media, Multiscale Model. Simul., 3, 30-64 (2005) |
[33] | Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, SIAM MMS, 2, 421-439 (2004) ·Zbl 1181.76125 |
[34] | Efendiev, Y.; Ginting, V.; Hou, T., Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys., 220, 155-174 (2006) ·Zbl 1158.76349 |
[35] | Gulbransen, A. F.; Hauge, V. L.; Lie, K. A., A multiscale mixed finite element method for vuggy and naturally fractured reservoirs, SPE J., 15, 2, 395-403 (2010) |
[36] | Hou, T. Y.; Wu, X. H.; Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput., 68, 913-943 (1999) ·Zbl 0922.65071 |
[37] | Hajibeygi, H.; Dimitris, K.; Patrick, J., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 8729-8743 (2011) ·Zbl 1370.76095 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.