Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model.(English)Zbl 1299.76156

Summary: Numerical simulation in naturally fractured media is challenging because of the coexistence of porous media and fractures on multiple scales that need to be coupled. We present a new approach to reservoir simulation that gives accurate resolution of both large-scale and fine-scale flow patterns. Multiscale methods are suitable for this type of modeling, because it enables capturing the large scale behavior of the solution without solving all the small features. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity.
In this work, we use a multiscale finite element method (MsFEM) for two-phase flow in fractured media using the discrete-fracture model. By combining MsFEM with the discrete-fracture model, we aim towards a numerical scheme that facilitates fractured reservoir simulation without upscaling. MsFEM uses a standard Darcy model to approximate the pressure and saturation on a coarse grid, whereas fine scale effects are captured through basis functions constructed by solving local flow problems using the discrete-fracture model. The accuracy and the robustness of MsFEM are shown through several examples. In the first example, we consider several small fractures in a matrix and then compare the results solved by the finite element method. Then, we use the MsFEM in more complex models. The results indicate that the MsFEM is a promising path toward direct simulation of highly resolution geomodels.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture

Cite

References:

[1]Karimi-Fard, M.; Firoozabadi, A., Numerical simulation of water injection in 2D fractured media using discrete-fracture model, SPE Resour. Eval. Eng., 4, 117-126 (2003)
[3]Barrenblatt (1986), Petroleum Industry Press: Petroleum Industry Press Beijing, Translated by Huang Xitao, pp. 48-60
[4]Juanes, R.; Patzek, T. W., A variational multiscale finite element method for multiphase flow in porous media, Finite Elem. Anal. Des., 41, 7-8, 763-777 (2005)
[6]Lemonnier, P.; Bourbiaux, B., Simulation of naturally fractured reservoirs—state of the art-part 1 matrix-fracture transfers and typical features of numerical studies, Oil Gas Sci. Technol. Rev. IFP, 65, 263-286 (2010)
[7]Ghorayeb, K.; Firoozabadi, A., Numerical study of natural convection and diffusion in fractured porous media, SPE J., 5, 12-20 (2000)
[8]Huang, J.; Yao, Y. Y.; Wang, Chin. J. Comput. Phys., 28, 148-156 (2011), in Chinese
[9]Hoteit, H.; Firoozabadi, A., Adv. Water Resour., 31, 891-905 (2008)
[10]Hauge, V. L.; Aarnes, J. E., Modeling of two-phase flow in fractured porous media on unstructured non-uniformly coarsened grids, Transp. Porous Media, 77, 373-398 (2009)
[11]Noorishad, J.; Mehran, M., An upstream finite element method for solution of transient transport equation in fractured porous media, Water Resour. Res., 18, 3, 588-596 (1982)
[12]Baca, R. G.; Arnett, R. C.; Langford, D. W., Modeling fluid flow in fractured-porous rock masses by finite element techniques, Int. J. Numer. Methods Fluids, 4, 4, 337-348 (1984) ·Zbl 0579.76095
[14]Kim, J. G.; Deo, M. D., Finite element, discrete-fracture model for multiphase flow in porous media, AIChE J., 1120-1130 (2000)
[15]Huang, Z. Q.; Yao, J.; Wang, Y. Y., Numerical study on two-phase flow through fractured porous media, Sci. China Tech. Sci., 54, 2412-2420 (2011) ·Zbl 1237.76194
[17]Monteagudo, J. E.P.; Firoozabadi, A., Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media, Water Resour. Res., 40, W07405 (2004)
[18]Durlofsky, L. J., Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27, 699-708 (1991)
[19]Efendiev, Y.; Hou, T.; Ginting, V., Multiscale finite element methods for nonlinear problems and their applications, Commun. Math. Sci., 2, 553-589 (2004) ·Zbl 1083.65105
[20]Huang, Z. Q.; Yao, J.; Li, Y. J., Numerical calculation of equivalent permeability tensor for fractured Vuggy porous media based on homogenization theory, Commun. Comput. Phys., 9, 180-204 (2011) ·Zbl 1284.76351
[21]Weinan, E.; Engquist, B., The heterogeneous multi-scale methods, Commun. Math. Sci., 1, 1, 87-133 (2003) ·Zbl 1093.35012
[22]Chen, Y.; Durlofsky, L. J., Adaptive local-global upscaling for general flow scenarios in heterogeneous formations, Transp. Porous Media, 62, 157-185 (2006)
[23]Wu, X. H.; Efendiev, Y.; Hou, T. Y., Analysis of upscaling absolute permeability, Discrete Contin. Dyn. Syst. Ser. B, 2, 185-204 (2002) ·Zbl 1162.65327
[24]Hou, T. Y.; Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 1, 169-189 (1997) ·Zbl 0880.73065
[25]Hughes, T. J.R.; Feijoo, G. R.; Mazzei, L., The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 3-24 (1998) ·Zbl 1017.65525
[26]Aarnes, J. E.; Krogstad, S.; Lie, K. A., Multiscale mixed/mimetic finite-element methods on corner-point grids, Comput. Geosci., 12, 3, 297-315 (2008) ·Zbl 1259.76065
[27]Lee, S. H.; Wolfsteiner, C. W.; Tchelepi, H., Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three phase flow with gravity, Comput. Geosci., 12, 3, 351-366 (2008) ·Zbl 1259.76049
[29]Kippe, V.; Aarnes, J. E.; Lie, K.-A., A comparison of multiscale methods for elliptic problems in porous media flow, Comput. Geosci., 12, 3, 377-398 (2008) ·Zbl 1259.76047
[30]Chen, Z.; Hou, T. Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 541-576 (2002) ·Zbl 1017.65088
[31]Jenny, P.; Lee, S. H.; Tchelepi, H., Multi-scale finite volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67 (2003) ·Zbl 1047.76538
[32]Jenny, P.; Lee, S. H.; Tchelepi, H., Adaptive multi-scale finite volume method for multi-phase flow and transport in porous media, Multiscale Model. Simul., 3, 30-64 (2005)
[33]Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, SIAM MMS, 2, 421-439 (2004) ·Zbl 1181.76125
[34]Efendiev, Y.; Ginting, V.; Hou, T., Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys., 220, 155-174 (2006) ·Zbl 1158.76349
[35]Gulbransen, A. F.; Hauge, V. L.; Lie, K. A., A multiscale mixed finite element method for vuggy and naturally fractured reservoirs, SPE J., 15, 2, 395-403 (2010)
[36]Hou, T. Y.; Wu, X. H.; Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput., 68, 913-943 (1999) ·Zbl 0922.65071
[37]Hajibeygi, H.; Dimitris, K.; Patrick, J., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 8729-8743 (2011) ·Zbl 1370.76095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp