Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Graphs of quantum groups and \(K\)-amenability.(English)Zbl 1297.46048

Summary: Building on a construction of J.-P. Serre, we associate to any graph of \(C^\ast\)-algebras a maximal and a reduced fundamental \(C^\ast\)-algebra and use this theory to construct the fundamental quantum group of a graph of discrete quantum groups. This construction naturally gives rise to a quantum Bass-Serre tree which can be used to study the \(K\)-theory of the fundamental quantum group. To illustrate the properties of this construction, we prove that, if all the vertex quantum groups are amenable, then the fundamental quantum group is \(K\)-amenable. This generalizes previous results ofP. Julg andA. Valette [J. Funct. Anal. 58, 194–215 (1984;Zbl 0559.46030)],R. Vergnioux [ibid. 212, No. 1, 206–221 (2004;Zbl 1064.46064)] and the first author [ibid. 265, No. 4, 507–519 (2013;Zbl 1316.46044)]. Our proof, even for classical groups, is quite different from the original proof of Julg and Valette, which does not seem to extend straightforwardly to the quantum setting.

MSC:

46L65 Quantizations, deformations for selfadjoint operator algebras
46L09 Free products of \(C^*\)-algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Cite

References:

[1]Baaj, S.; Skandalis, G., \(C^⁎\)-algèbres de Hopf et théorie de Kasparov équivariante, K-Theory, 2, 6, 683-721 (1989) ·Zbl 0683.46048
[2]Baum, P.; Connes, A.; Higson, N., Classifying space for proper actions and K-theory of group \(C^⁎\)-algebras, (Contemp. Math., vol. 167 (1994)), 241-292 ·Zbl 0830.46061
[3]Bédos, E.; Murphy, G. J.; Tuset, L., Co-amenability of compact quantum groups, J. Geom. Phys., 40, 2, 129-153 (2001) ·Zbl 1011.46056
[4]Blackadar, B., K-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., vol. 5 (1998), Cambridge Univ. Press ·Zbl 0913.46054
[5]Boca, F., On the method of constructing irreducible finite index subfactors of Popa, Pacific J. Math., 161, 2, 201-231 (1993) ·Zbl 0795.46044
[6]Brown, N. P.; Dykema, K. J.; Jung, K., Free entropy dimension in amalgamated free products, Proc. Lond. Math. Soc., 97, 3, 339-367 (2008), with an appendix by Wolfgang Lück ·Zbl 1158.46045
[7]Cuntz, J., K-theoretic amenability for discrete groups, J. Reine Angew. Math., 344, 180-195 (1983) ·Zbl 0511.46066
[8]Daws, M.; Fima, P.; Skalski, A.; Stuart, W., The Haagerup property for locally compact quantum groups (2013), preprint
[9]Dykema, K. J., Exactness of reduced amalgamated free product \(C^⁎\)-algebras, Forum Math., 16, 161-180 (2004) ·Zbl 1050.46040
[10]Fima, P., K-amenability of HNN extensions of amenable discrete quantum groups, J. Funct. Anal., 265, 4, 507-519 (2013) ·Zbl 1316.46044
[11]Fima, P.; Vaes, S., HNN extensions and unique group measure space decomposition of \(II_1\) factors, Trans. Amer. Math. Soc., 364, 5, 2601-2617 (2012) ·Zbl 1251.46032
[12]Freslon, A., Propriétés d’approximation pour les groupes quantiques discrets (2013), Université Paris VII, Ph.D. thesis
[13]Germain, E., KK-theory of reduced free-product \(C^⁎\)-algebras, Duke Math. J., 82, 3, 707-724 (1996) ·Zbl 0863.46046
[14]Julg, P.; Valette, A., K-theoretic amenability for \(S L_2(Q_p)\), and the action on the associated tree, J. Funct. Anal., 58, 2, 194-215 (1984) ·Zbl 0559.46030
[15]Maes, A.; Van Daele, A., Notes on compact quantum groups (1998), preprint ·Zbl 0962.46054
[16]Pimsner, M. V., KK-groups of crossed products by groups acting on trees, Invent. Math., 86, 3, 603-634 (1986) ·Zbl 0638.46049
[17]Pimsner, M. V.; Voiculescu, D. V., K-groups of reduced crossed products by free groups, J. Operator Theory, 8, 1, 131-156 (1982) ·Zbl 0533.46045
[18]Serre, J.-P., Arbres, amalgames, \(SL_2\), Astérisque, 46 (1977) ·Zbl 0302.20039
[19]Skandalis, G., Une notion de nucléarité en K-théorie (d’après J. Cuntz), K-Theory, 1, 6, 549-573 (1988) ·Zbl 0653.46065
[20]Takesaki, M., Conditional expectations in von Neumann algebras, J. Funct. Anal., 9, 3, 306-321 (1972) ·Zbl 0245.46089
[21]Ueda, Y., HNN extensions of von Neumann algebras, J. Funct. Anal., 225, 2, 383-426 (2005) ·Zbl 1088.46034
[22]Ueda, Y., Remarks on HNN extensions in operator algebras, Illinois J. Math., 52, 3, 705-725 (2008) ·Zbl 1183.46057
[23]Vergnioux, R., K-amenability for amalgamated free products of amenable discrete quantum groups, J. Funct. Anal., 212, 1, 206-221 (2004) ·Zbl 1064.46064
[24]Vergnioux, R.; Voigt, C., The K-theory of free quantum groups, Math. Ann., 357, 1, 355-400 (2013) ·Zbl 1284.46063
[25]Voiculescu, D. V., Symmetries of some reduced free product \(C^⁎\)-algebras, (Lecture Notes in Math., vol. 1132 (1985)), 556-588 ·Zbl 0618.46048
[26]Wang, S., Free products of compact quantum groups, Comm. Math. Phys., 167, 3, 671-692 (1995) ·Zbl 0838.46057
[27]Woronowicz, S. L., Compact quantum groups, (Symétries quantiques. Symétries quantiques, Les Houches, 1995 (1998)), 845-884 ·Zbl 0997.46045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp