[1] | Baaj, S.; Skandalis, G., \(C^⁎\)-algèbres de Hopf et théorie de Kasparov équivariante, K-Theory, 2, 6, 683-721 (1989) ·Zbl 0683.46048 |
[2] | Baum, P.; Connes, A.; Higson, N., Classifying space for proper actions and K-theory of group \(C^⁎\)-algebras, (Contemp. Math., vol. 167 (1994)), 241-292 ·Zbl 0830.46061 |
[3] | Bédos, E.; Murphy, G. J.; Tuset, L., Co-amenability of compact quantum groups, J. Geom. Phys., 40, 2, 129-153 (2001) ·Zbl 1011.46056 |
[4] | Blackadar, B., K-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., vol. 5 (1998), Cambridge Univ. Press ·Zbl 0913.46054 |
[5] | Boca, F., On the method of constructing irreducible finite index subfactors of Popa, Pacific J. Math., 161, 2, 201-231 (1993) ·Zbl 0795.46044 |
[6] | Brown, N. P.; Dykema, K. J.; Jung, K., Free entropy dimension in amalgamated free products, Proc. Lond. Math. Soc., 97, 3, 339-367 (2008), with an appendix by Wolfgang Lück ·Zbl 1158.46045 |
[7] | Cuntz, J., K-theoretic amenability for discrete groups, J. Reine Angew. Math., 344, 180-195 (1983) ·Zbl 0511.46066 |
[8] | Daws, M.; Fima, P.; Skalski, A.; Stuart, W., The Haagerup property for locally compact quantum groups (2013), preprint |
[9] | Dykema, K. J., Exactness of reduced amalgamated free product \(C^⁎\)-algebras, Forum Math., 16, 161-180 (2004) ·Zbl 1050.46040 |
[10] | Fima, P., K-amenability of HNN extensions of amenable discrete quantum groups, J. Funct. Anal., 265, 4, 507-519 (2013) ·Zbl 1316.46044 |
[11] | Fima, P.; Vaes, S., HNN extensions and unique group measure space decomposition of \(II_1\) factors, Trans. Amer. Math. Soc., 364, 5, 2601-2617 (2012) ·Zbl 1251.46032 |
[12] | Freslon, A., Propriétés d’approximation pour les groupes quantiques discrets (2013), Université Paris VII, Ph.D. thesis |
[13] | Germain, E., KK-theory of reduced free-product \(C^⁎\)-algebras, Duke Math. J., 82, 3, 707-724 (1996) ·Zbl 0863.46046 |
[14] | Julg, P.; Valette, A., K-theoretic amenability for \(S L_2(Q_p)\), and the action on the associated tree, J. Funct. Anal., 58, 2, 194-215 (1984) ·Zbl 0559.46030 |
[15] | Maes, A.; Van Daele, A., Notes on compact quantum groups (1998), preprint ·Zbl 0962.46054 |
[16] | Pimsner, M. V., KK-groups of crossed products by groups acting on trees, Invent. Math., 86, 3, 603-634 (1986) ·Zbl 0638.46049 |
[17] | Pimsner, M. V.; Voiculescu, D. V., K-groups of reduced crossed products by free groups, J. Operator Theory, 8, 1, 131-156 (1982) ·Zbl 0533.46045 |
[18] | Serre, J.-P., Arbres, amalgames, \(SL_2\), Astérisque, 46 (1977) ·Zbl 0302.20039 |
[19] | Skandalis, G., Une notion de nucléarité en K-théorie (d’après J. Cuntz), K-Theory, 1, 6, 549-573 (1988) ·Zbl 0653.46065 |
[20] | Takesaki, M., Conditional expectations in von Neumann algebras, J. Funct. Anal., 9, 3, 306-321 (1972) ·Zbl 0245.46089 |
[21] | Ueda, Y., HNN extensions of von Neumann algebras, J. Funct. Anal., 225, 2, 383-426 (2005) ·Zbl 1088.46034 |
[22] | Ueda, Y., Remarks on HNN extensions in operator algebras, Illinois J. Math., 52, 3, 705-725 (2008) ·Zbl 1183.46057 |
[23] | Vergnioux, R., K-amenability for amalgamated free products of amenable discrete quantum groups, J. Funct. Anal., 212, 1, 206-221 (2004) ·Zbl 1064.46064 |
[24] | Vergnioux, R.; Voigt, C., The K-theory of free quantum groups, Math. Ann., 357, 1, 355-400 (2013) ·Zbl 1284.46063 |
[25] | Voiculescu, D. V., Symmetries of some reduced free product \(C^⁎\)-algebras, (Lecture Notes in Math., vol. 1132 (1985)), 556-588 ·Zbl 0618.46048 |
[26] | Wang, S., Free products of compact quantum groups, Comm. Math. Phys., 167, 3, 671-692 (1995) ·Zbl 0838.46057 |
[27] | Woronowicz, S. L., Compact quantum groups, (Symétries quantiques. Symétries quantiques, Les Houches, 1995 (1998)), 845-884 ·Zbl 0997.46045 |