Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Magnetic black holes with higher-order curvature and gauge corrections in even dimensions.(English)Zbl 1290.83042

Summary: We obtain magnetic black-hole solutions in arbitrary \(n (\geq 4)\) even dimensions for an action given by the Einstein-Gauss-Bonnet-Maxwell-{\(\Lambda\)} pieces with the \(F^{4}\) gauge-correction terms. This action arises in the low energy limit of heterotic string theory with constant dilaton and vanishing higher form fields. The spacetime is assumed to be a warped product \(\mathcal{M}^2 \times \mathcal{K}^{n - 2}\), where \(\mathcal{K}^{n - 2}\) is a (\(n - 2\))-dimensional Einstein space satisfying a condition on its Weyl tensor, originally considered by Dotti and Gleiser. Under a few reasonable assumptions, we establish the generalized Jebsen-Birkhoff theorem for the magnetic solution in the case where the orbit of the warp factor on \(\mathcal{K}^{n - 2}\) is non-null. We prove that such magnetic solutions do not exist in odd dimensions. In contrast, in even dimensions, we obtain an explicit solution in the case where \(\mathcal{K}^{n - 2}\) is a product manifold of (\(n - 2\))/2 two-dimensional maximally symmetric spaces with the same constant warp factors. In this latter case, we show that the global structure of the spacetime sharply depends on the existence of the gauge-correction terms as well as the number of spacetime dimensions.

MSC:

83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
83E15 Kaluza-Klein and other higher-dimensional theories
82D40 Statistical mechanics of magnetic materials
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

Cite

References:

[1]J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [SPIRES]. ·Zbl 0914.53047
[2]D.J. Gross and E. Witten, Superstring modifications of Einstein’s equations, Nucl. Phys.B 277 (1986) 1 [SPIRES].
[3]R.R. Metsaev and A.A. Tseytlin, Two loop β-function for the generalized bosonic σ-model, Phys. Lett.B 191 (1987) 354 [SPIRES].
[4]J. Scherk and J.H. Schwarz, Dual models for Nonhadrons, Nucl. Phys.B 81 (1974) 118 [SPIRES].
[5]D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys.B 291 (1987) 41 [SPIRES].
[6]B. Zwiebach, Curvature squared terms and string theories, Phys. Lett.B 156 (1985) 315 [SPIRES].
[7]D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett.55 (1985) 2656 [SPIRES].
[8]J.T. Wheeler, Symmetric solutions to the Gauss-Bonnet extended Einstein equations, Nucl. Phys.B 268 (1986) 737 [SPIRES].
[9]J.T. Wheeler, Symmetric solutions to the maximally Gauss-Bonnet extended Einstein equations, Nucl. Phys.B 273 (1986) 732 [SPIRES]. ·Zbl 0992.83522
[10]F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim.27 (1963) 636 [SPIRES]. ·Zbl 0114.21302
[11]R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys.172 (1986) 304 [SPIRES]. ·Zbl 0601.53081
[12]C. Charmousis, Higher order gravity theories and their black hole solutions, Lect. Notes Phys.769 (2009) 299 [arXiv:0805.0568] [SPIRES]. ·Zbl 1163.83301
[13]C. Garraffo and G. Giribet, The lovelock black holes, Mod. Phys. Lett.A 23 (2008) 1801 [arXiv:0805.3575] [SPIRES]. ·Zbl 1159.83301
[14]D.L. Wiltshire, Spherically symmetric solutions of Einstein-Maxwell theory with a Gauss-Bonnet term, Phys. Lett.B 169 (1986) 36 [SPIRES].
[15]D. Lorenz-Petzold, Higher dimensional Gauss-Bonnet cosmologies, Mod. Phys. Lett.A 3 (1988) 827 [SPIRES].
[16]M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in deSitter and anti-deSitter Einstein-Gauss-Bonnet gravity, Nucl. Phys.B 628 (2002) 295 [hep-th/0112045] [SPIRES]. ·Zbl 0992.83038
[17]R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev.D 65 (2002) 084014 [hep-th/0109133] [SPIRES].
[18]Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP12 (2007) 068 [hep-th/0606100] [SPIRES]. ·Zbl 1246.83122
[19]D. Anninos and G. Pastras, Thermodynamics of the Maxwell-Gauss-Bonnet anti-de Sitter black hole with higher derivative gauge corrections, JHEP07 (2009) 030 [arXiv:0807.3478] [SPIRES].
[20]R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev.D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].
[21]M. Natsuume, Higher order correction to the GHS string black hole, Phys. Rev.D 50 (1994) 3949 [hep-th/9406079] [SPIRES].
[22]D. Ida and Y. Uchida, Stationary Einstein-Maxwell fields in arbitrary dimensions, Phys. Rev.D 68 (2003) 104014 [gr-qc/0307095] [SPIRES].
[23]O.J.C. Dias and J.P.S. Lemos, Rotating magnetic solution in three dimensional Einstein gravity, JHEP01 (2002) 006 [hep-th/0201058] [SPIRES].
[24]M.H. Dehghani, Horizonless rotating solutions in (n+1)-dimensional Einstein-Maxwell gravity, Phys. Rev.D 69 (2004) 044024 [hep-th/0310180] [SPIRES].
[25]M. Ortaggio, Higher dimensional black holes in external magnetic fields, JHEP05 (2005) 048 [gr-qc/0410048] [SPIRES].
[26]S.S. Yazadjiev, Magnetized black holes and black rings in the higher dimensional dilaton gravity, Phys. Rev.D 73 (2006) 064008 [gr-qc/0511114] [SPIRES].
[27]G. Dotti and R.J. Gleiser, Obstructions on the horizon geometry from string theory corrections to Einstein gravity, Phys. Lett.B 627 (2005) 174 [hep-th/0508118] [SPIRES]. ·Zbl 1247.83198
[28]H. Maeda, Gauss-Bonnet black holes with non-constant curvature horizons, Phys. Rev.D 81 (2010) 124007 [arXiv:1004.0917] [SPIRES].
[29]R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984). ·Zbl 0549.53001
[30]G. Dotti, J. Oliva and R. Troncoso, Static solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory in vacuum, Phys. Rev.D 82 (2010) 024002 [arXiv:1004.5287] [SPIRES].
[31]C. Bogdanos, C. Charmousis, B. Gouteraux and R. Zegers, Einstein-Gauss-Bonnet metrics: black holes, black strings and a staticity theorem, JHEP10 (2009) 037 [arXiv:0906.4953] [SPIRES].
[32]H. Maeda and N. Dadhich, Matter without matter: Novel Kaluza-Klein spacetime in Einstein-Gauss-Bonnet gravity, Phys. Rev.D 75 (2007) 044007 [hep-th/0611188] [SPIRES].
[33]C. Charmousis and J.-F. Dufaux, General Gauss-Bonnet brane cosmology, Class. Quant. Grav.19 (2002) 4671 [hep-th/0202107] [SPIRES]. ·Zbl 1027.83037
[34]S. Deser and B. Tekin, Shortcuts to high symmetry solutions in gravitational theories, Class. Quant. Grav.20 (2003) 4877 [gr-qc/0306114] [SPIRES]. ·Zbl 1170.83438
[35]H. Maeda and M. Nozawa, Generalized Misner-Sharp quasi-local mass in Einstein-Gauss-Bonnet gravity, Phys. Rev.D 77 (2008) 064031 [arXiv:0709.1199] [SPIRES].
[36]H. Nariai, A solution of the Maxwell-Einstein equations, Sci. Rept. Tohoku Univ.34 (1950) 160 [Sci. Rept. Tohoku Univ.35 (1951) 62].
[37]B. Bertotti, Uniform electromagnetic field in the theory of general relativity, Phys. Rev.116 (1959) 1331 [SPIRES]. ·Zbl 0093.43403
[38]I. Robinson, A solution of the Maxwell-Einstein equations, Bull. Acad. Polon. Sci.7 (1959) 351. ·Zbl 0085.42804
[39]J.P. Vajk and P.G. Eltgroth, Spatially homogeneous anisotropic cosmological models containing relativistic fluid and magnetic field, J. Math. Phys.11 (1970) 2212.
[40]A. Krasiński and J. Plebański, N-dimensional complex Riemann-Einstein spaces with O(n-1,C) as the symmetry group, Rept. Math. Phys.17 (1980) 217 [SPIRES]. ·Zbl 0469.53020
[41]O.J.C. Dias and J.P.S. Lemos, The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics, Phys. Rev.D 68 (2003) 104010 [hep-th/0306194] [SPIRES].
[42]V. Cardoso, O.J.C. Dias and J.P.S. Lemos, Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions, Phys. Rev.D 70 (2004) 024002 [hep-th/0401192] [SPIRES].
[43]D. Lorenz-Petzold, String generated anisotropic cosmological models, Phys. Lett.B 197 (1987) 71 [SPIRES].
[44]D. Lorenz-Petzold, String generated generalizations of the Nariai solution, Prog. Theor. Phys.78 (1987) 969 [SPIRES].
[45]H. Maeda and N. Dadhich, Matter without matter: Novel Kaluza-Klein spacetime in Einstein-Gauss-Bonnet gravity, Phys. Rev.D 75 (2007) 044007 [hep-th/0611188] [SPIRES].
[46]D. Lorenz-Petzold, String generated magnetic solutions of higher dimensional gravity, Class. Quant. Grav.5 (1988) L1 [SPIRES].
[47]M.H. Dehghani and M. Shamirzaie, Thermodynamics of asymptotic flat charged black holes in third order Lovelock gravity, Phys. Rev.D 72 (2005) 124015 [hep-th/0506227] [SPIRES].
[48]M. Ortaggio, J. Podolsky and M. Zofka, Robinson-Trautman spacetimes with an electromagnetic field in higher dimensions, Class. Quant. Grav.25 (2008) 025006 [arXiv:0708.4299] [SPIRES]. ·Zbl 1197.83101
[49]The authors would like to thank M. Nozawa and R. Baeza for bringing us this knowledge.
[50]S. Habib Mazharimousavi and M. Halilsoy, 5D-black hole solution in Einstein-Yang-Mills-Gauss-Bonnet theory, Phys. Rev.D 76 (2007) 087501 [arXiv:0801.1562] [SPIRES].
[51]S.H. Mazharimousavi and M. Halilsoy, Einstein-Yang-Mills black hole solution in higher dimensions by the Wu-Yang Ansatz, Phys. Lett.B 659 (2008) 471 [arXiv:0801.1554] [SPIRES]. ·Zbl 1246.83206
[52]S. Habib Mazharimousavi and M. Halilsoy, Black hole solutions in Einstein-Maxwell-Yang-Mills-Gauss-Bonnet theory, JCAP12 (2008) 005 [SPIRES]. ·Zbl 1246.83206
[53]N. Bostani and M.H. Dehghani, Topological black holes of (n+1)-dimensional Einstein-Yang-Mills gravity, Mod. Phys. Lett.A 25 (2010) 1507 [arXiv:0908.0661] [SPIRES]. ·Zbl 1193.83028
[54]M.H. Dehghani, N. Bostani and R. Pourhasan, Topological black holes of Gauss-Bonnet-Yang-Mills gravity, Int. J. Mod. Phys.D 19 (2010) 1107 [arXiv:0908.0663] [SPIRES]. ·Zbl 1197.83090
[55]S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973) [SPIRES]. ·Zbl 0265.53054
[56]S.M. Carroll, Spacetime and geometry: An introduction to gneral relativity Addison-Wesley, San Francisco U.S.A. (2004) [SPIRES]. ·Zbl 1131.83001
[57]T. Torii and H. Maeda, Spacetime structure of static solutions in Gauss-Bonnet gravity: Neutral case, Phys. Rev.D 71 (2005) 124002 [hep-th/0504127] [SPIRES].
[58]T. Torii and H. Maeda, Spacetime structure of static solutions in Gauss-Bonnet gravity: Charged case, Phys. Rev.D 72 (2005) 064007 [hep-th/0504141] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp