Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem.(English)Zbl 1290.49083

Summary: The exterior Bernoulli free boundary problem is being considered. The solution to the problem is studied via shape optimization techniques. The goal is to determine a domain having a specific regularity that gives a minimum value for the Kohn-Vogelius-type cost functional while simultaneously solving two PDE constraints: a pure Dirichlet boundary value problem and a Neumann boundary value problem. This paper focuses on the rigorous computation of the first-order shape derivative of the cost functional using the Hölder continuity of the state variables and not the usual approach which uses the shape derivatives of states.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
35R35 Free boundary problems for PDEs

Cite

References:

[1]Abda, B.; Bouchon, F.; Peichl, G.; Sayeh, M.; Touzani, R., A new formulation for the Bernoulli problem, Proceedings of the 5th International Conference on Inverse Problems, Control and Shape Optimization
[2]Caffarelli, L. A.; Salsa, S., A Geometric Approach to Free Boundary Problems (2005), Providence, RI, USA: American Mathematical Society, Providence, RI, USA ·Zbl 1083.35001
[3]Crank, J., Free and Moving Boundary Problems (1984), New York, NY, USA: Oxford University Press, New York, NY, USA ·Zbl 0547.35001
[4]Flucher, M.; Rumpf, M., Bernoulli’s free-boundary problem, qualitative theory and numerical approximation, Journal fur die Reine und Angewandte Mathematik, 486, 165-204 (1997) ·Zbl 0909.35154
[5]Friedman, A., Free boundary problems in science and technology, Notices of the AMS, 47, 854-861 (2000) ·Zbl 1040.35145
[6]Toivanen, J. I.; Haslinger, J.; Mäkinen, R. A. E., Shape optimization of systems governed by Bernoulli free boundary problems, Computer Methods in Applied Mechanics and Engineering, 197, 45-48, 3803-3815 (2008) ·Zbl 1194.76031 ·doi:10.1016/j.cma.2008.03.002
[7]Beurling, A., On free boundary problems for the Laplace equation, Proceedings of the Seminars on Analytic Functions
[8]Cardaliaguet, P.; Tahraoui, R., Some uniqueness results for Bernoulli interior free-boundary problems in convex domains, Electronic Journal of Differential Equations, 2002, 1-16 (2002) ·Zbl 1029.35227
[9]Haslinger, J.; Ito, K.; Kozubek, T.; Kunisch, K.; Peichl, G., On the shape derivative for problems of Bernoulli type, Interfaces and Free Boundaries, 11, 2, 317-330 (2009) ·Zbl 1178.49055
[10]Haslinger, J.; Kozubek, T.; Kunisch, K.; Peichl, G., Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type, Computational Optimization and Applications, 26, 3, 231-251 (2003) ·Zbl 1077.49030 ·doi:10.1023/A:1026095405906
[11]Eppler, K.; Harbrecht, H., Shape optimization for free boundary problems-analysis and numerics, Constrained Optimization and Optimal Control for Partial Differential Equations, 160, 277-288 (2012) ·Zbl 1356.49073
[12]Eppler, K.; Harbrecht, H., Tracking Neumann data for stationary free boundary problems, SIAM Journal on Control and Optimization, 48, 5, 2901-2916 (2009) ·Zbl 1202.49052 ·doi:10.1137/080733760
[13]Ito, K.; Kunisch, K.; Peichl, G. H., Variational approach to shape derivatives for a class of Bernoulli problems, Journal of Mathematical Analysis and Applications, 314, 1, 126-149 (2006) ·Zbl 1088.49028 ·doi:10.1016/j.jmaa.2005.03.100
[14]Kohn, R.; Vogelius, M., Determining conductivity by boundary measurements, Communications on Pure and Applied Mathematics, 37, 3, 289-298 (1984) ·Zbl 0586.35089 ·doi:10.1002/cpa.3160370302
[15]Eppler, K.; Harbrecht, H., On a Kohn-Vogelius like formulation of free boundary problems, Computational Optimization and Applications, 52, 1, 69-85 (2012) ·Zbl 1258.49069 ·doi:10.1007/s10589-010-9345-3
[16]Delfour, M.; Zolesio, J., Shapes and Geometries (2001), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA ·Zbl 1002.49029
[17]Ciarlet, P., Mathematical Elasticity I (1988), Amsterdam, The Netherlands: Elsevier Science Publishers B.V., Amsterdam, The Netherlands ·Zbl 0648.73014
[18]Sokolowski, J.; Zolesio, J., Introduction to Shape Optimization (1991), Berlin, Germany: Springer, Berlin, Germany
[19]Bacani, J., Methods of shape optimization in free boundary problems [Ph.D. thesis] (2013), Graz, Austria: Karl-Franzens-Universitaet Graz, Graz, Austria
[20]Haslinger, J.; Mäkinen, R. A. E., Introduction to Shape Optimization (Theory, Approximation, and Computation) (2003), Philadelphia, Pa, USA: SIAM Advances and Control, Philadelphia, Pa, USA ·Zbl 1020.74001
[21]Tiihonen, T., Shape optimization and trial methods for free boundary problems, Mathematical Modelling and Numerical Analysis, 31, 7, 805-825 (1997) ·Zbl 0891.65131
[22]Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Marshfield, Mass, USA: Pitman Publishing, Marshfield, Mass, USA ·Zbl 0695.35060
[23]Evans, L. C., Partial Differential Equations (1998), Providence, RI, USA: American Mathematical Society, Providence, RI, USA ·Zbl 0902.35002
[24]Girault, V.; Raviart, P., Finite Element Methods for Navier-Stoke’s Equations (Theory and Algorithms) (1986), Berlin, Germany: Springer, Berlin, Germany ·Zbl 0585.65077
[25]Kufner, A.; John, O.; Fucik, S., Function Spaces (1977), Leyden, The Netherlands: Noordhoff International Publishing, Leyden, The Netherlands ·Zbl 0364.46022
[26]Delfour, M. C.; Zolésio, J. P., Anatomy of the shape Hessian, Annali di Matematica Pura ed Applicata, 159, 1, 315-339 (1991) ·Zbl 0770.49025 ·doi:10.1007/BF01766307
[27]Lamboley, J.; Pierre, M., Structure of shape derivatives around irregular domains and applications, Journal of Convex Analysis, 14, 4, 807-822 (2007) ·Zbl 1123.49034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp