[1] | Abda, B.; Bouchon, F.; Peichl, G.; Sayeh, M.; Touzani, R., A new formulation for the Bernoulli problem, Proceedings of the 5th International Conference on Inverse Problems, Control and Shape Optimization |
[2] | Caffarelli, L. A.; Salsa, S., A Geometric Approach to Free Boundary Problems (2005), Providence, RI, USA: American Mathematical Society, Providence, RI, USA ·Zbl 1083.35001 |
[3] | Crank, J., Free and Moving Boundary Problems (1984), New York, NY, USA: Oxford University Press, New York, NY, USA ·Zbl 0547.35001 |
[4] | Flucher, M.; Rumpf, M., Bernoulli’s free-boundary problem, qualitative theory and numerical approximation, Journal fur die Reine und Angewandte Mathematik, 486, 165-204 (1997) ·Zbl 0909.35154 |
[5] | Friedman, A., Free boundary problems in science and technology, Notices of the AMS, 47, 854-861 (2000) ·Zbl 1040.35145 |
[6] | Toivanen, J. I.; Haslinger, J.; Mäkinen, R. A. E., Shape optimization of systems governed by Bernoulli free boundary problems, Computer Methods in Applied Mechanics and Engineering, 197, 45-48, 3803-3815 (2008) ·Zbl 1194.76031 ·doi:10.1016/j.cma.2008.03.002 |
[7] | Beurling, A., On free boundary problems for the Laplace equation, Proceedings of the Seminars on Analytic Functions |
[8] | Cardaliaguet, P.; Tahraoui, R., Some uniqueness results for Bernoulli interior free-boundary problems in convex domains, Electronic Journal of Differential Equations, 2002, 1-16 (2002) ·Zbl 1029.35227 |
[9] | Haslinger, J.; Ito, K.; Kozubek, T.; Kunisch, K.; Peichl, G., On the shape derivative for problems of Bernoulli type, Interfaces and Free Boundaries, 11, 2, 317-330 (2009) ·Zbl 1178.49055 |
[10] | Haslinger, J.; Kozubek, T.; Kunisch, K.; Peichl, G., Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type, Computational Optimization and Applications, 26, 3, 231-251 (2003) ·Zbl 1077.49030 ·doi:10.1023/A:1026095405906 |
[11] | Eppler, K.; Harbrecht, H., Shape optimization for free boundary problems-analysis and numerics, Constrained Optimization and Optimal Control for Partial Differential Equations, 160, 277-288 (2012) ·Zbl 1356.49073 |
[12] | Eppler, K.; Harbrecht, H., Tracking Neumann data for stationary free boundary problems, SIAM Journal on Control and Optimization, 48, 5, 2901-2916 (2009) ·Zbl 1202.49052 ·doi:10.1137/080733760 |
[13] | Ito, K.; Kunisch, K.; Peichl, G. H., Variational approach to shape derivatives for a class of Bernoulli problems, Journal of Mathematical Analysis and Applications, 314, 1, 126-149 (2006) ·Zbl 1088.49028 ·doi:10.1016/j.jmaa.2005.03.100 |
[14] | Kohn, R.; Vogelius, M., Determining conductivity by boundary measurements, Communications on Pure and Applied Mathematics, 37, 3, 289-298 (1984) ·Zbl 0586.35089 ·doi:10.1002/cpa.3160370302 |
[15] | Eppler, K.; Harbrecht, H., On a Kohn-Vogelius like formulation of free boundary problems, Computational Optimization and Applications, 52, 1, 69-85 (2012) ·Zbl 1258.49069 ·doi:10.1007/s10589-010-9345-3 |
[16] | Delfour, M.; Zolesio, J., Shapes and Geometries (2001), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA ·Zbl 1002.49029 |
[17] | Ciarlet, P., Mathematical Elasticity I (1988), Amsterdam, The Netherlands: Elsevier Science Publishers B.V., Amsterdam, The Netherlands ·Zbl 0648.73014 |
[18] | Sokolowski, J.; Zolesio, J., Introduction to Shape Optimization (1991), Berlin, Germany: Springer, Berlin, Germany |
[19] | Bacani, J., Methods of shape optimization in free boundary problems [Ph.D. thesis] (2013), Graz, Austria: Karl-Franzens-Universitaet Graz, Graz, Austria |
[20] | Haslinger, J.; Mäkinen, R. A. E., Introduction to Shape Optimization (Theory, Approximation, and Computation) (2003), Philadelphia, Pa, USA: SIAM Advances and Control, Philadelphia, Pa, USA ·Zbl 1020.74001 |
[21] | Tiihonen, T., Shape optimization and trial methods for free boundary problems, Mathematical Modelling and Numerical Analysis, 31, 7, 805-825 (1997) ·Zbl 0891.65131 |
[22] | Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Marshfield, Mass, USA: Pitman Publishing, Marshfield, Mass, USA ·Zbl 0695.35060 |
[23] | Evans, L. C., Partial Differential Equations (1998), Providence, RI, USA: American Mathematical Society, Providence, RI, USA ·Zbl 0902.35002 |
[24] | Girault, V.; Raviart, P., Finite Element Methods for Navier-Stoke’s Equations (Theory and Algorithms) (1986), Berlin, Germany: Springer, Berlin, Germany ·Zbl 0585.65077 |
[25] | Kufner, A.; John, O.; Fucik, S., Function Spaces (1977), Leyden, The Netherlands: Noordhoff International Publishing, Leyden, The Netherlands ·Zbl 0364.46022 |
[26] | Delfour, M. C.; Zolésio, J. P., Anatomy of the shape Hessian, Annali di Matematica Pura ed Applicata, 159, 1, 315-339 (1991) ·Zbl 0770.49025 ·doi:10.1007/BF01766307 |
[27] | Lamboley, J.; Pierre, M., Structure of shape derivatives around irregular domains and applications, Journal of Convex Analysis, 14, 4, 807-822 (2007) ·Zbl 1123.49034 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.