Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems.(English)Zbl 1286.74111

Summary: An automatic adaptive coupling procedure is proposed for the finite element method (FEM) and the element-free Galerkin method (EFGM) for linear elasticity and for problems with both material and geometrical nonlinearities. In this new procedure, initially the whole of the problem domain is modelled using the FEM. During an analysis, those finite elements which violate a predefined error measure are automatically converted to an EFG zone. This EFG zone can be further refined by adding nodes, thus avoiding computationally expensive FE remeshing. Local maximum entropy shape functions are used in the EFG zone of the problem domain for two reasons: their weak Kronecker delta property at the boundaries allows straightforward imposition of essential boundary conditions and also provides a natural way to couple the EFG and FE regions compared to the use of moving least squares basis functions. The Zienkiewicz and Zhu error estimation procedure with the superconvergent patch method for strains and stresses recovery is used in the FE region of the problem domain, while the Chung and Belytschko error estimation procedure is used in the EFG region.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

maxentcode

Cite

References:

[1]Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 229-256 (1994) ·Zbl 0796.73077
[2]Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. Methods Eng., 61, 13, 2316-2343 (2004) ·Zbl 1075.74703
[3]Rabczuk, T.; Zi, G., A meshfree method based on the local partition of unity for cohesive cracks, Comput. Mech., 39, 6, 743-760 (2007) ·Zbl 1161.74055
[4]Rabczuk, T.; Belytschko, T., A three dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng., 196, 29-30, 2777-2799 (2007) ·Zbl 1128.74051
[5]Rabczuk, T.; Bordas, S.; Zi, G., A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics, Comput. Mech., 40, 3, 473-495 (2007) ·Zbl 1161.74054
[6]Bordas, S.; Rabczuk, T.; Zi, G., Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment, Eng. Fract. Mech., 75, 5, 943-960 (2008)
[7]Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures, Eng. Fract. Mech., 75, 16, 4740-4758 (2008)
[8]Rabczuk, T.; Eibl, J.; Stempniewski, L., Simulation of high velocity concrete fragmentation using SPH/MLSPH, Int. J. Numer. Methods Eng., 56, 10, 1421-1444 (2003) ·Zbl 1106.74428
[9]Zhuang, X.; Augarde, C. E.; Bordas, S. P., Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling, Int. J. Numer. Methods Eng., 86, 2, 249-268 (2011) ·Zbl 1235.74346
[10]Zhuang, X.; Augarde, C. E.; Mathisen, K. M., Fracture modeling using meshless methods and level sets in 3D: framework and modeling, Int. J. Numer. Methods Eng., 92, 969-998 (2012) ·Zbl 1352.74312
[11]Zhuang, X.; Heaney, C. E.; Augarde, C. E., On error control in the element-free Galerkin method, Eng. Anal. Boundary Elem., 36, 3, 351-360 (2012) ·Zbl 1245.65161
[12]Zhuang, X.; Augarde, C. E., Aspects of the use of orthogonal basis functions in the element-free Galerkin method, Int. J. Numer. Methods Eng., 81, 3, 366-380 (2010) ·Zbl 1183.74376
[13]Belytschko, T.; Organ, D.; Krongauz, Y., A coupled finite element-element-free Galerkin method, Comput. Mech., 17, 186-195 (1995) ·Zbl 0840.73058
[14]Fernández-Méndez, S.; Huerta, A., Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. Methods Eng., 48, 1615-1636 (2000) ·Zbl 0976.74067
[15]Huerta, A.; Fernández-Méndez, S.; Liu, W. K., A comparison of two formulations to blend finite elements and mesh-free methods, Comput. Methods Appl. Mech. Eng., 193, 1105-1117 (2004) ·Zbl 1059.65104
[16]Hegen, D., Element-free Galerkin methods in combination with finite element approaches, Comput. Methods Appl. Mech. Eng., 135, 1-2, 143-166 (1996) ·Zbl 0893.73063
[17]Rabczuk, T.; Belytschko, T., Application of particle methods to static fracture of reinforced concrete structures, Int. J. Fract., 137, 19-49 (2006) ·Zbl 1197.74175
[18]Gu, Y. T.; Zhang, L. C., Coupling of the meshfree and finite element methods for determination of the crack tip fields, Eng. Fract. Mech., 75, 5, 986-1004 (2008)
[19]Xiao, Q.; Dhanasekar, M., Coupling of FE and EFG using collocation approach, Adv. Eng. Softw., 33, 507-515 (2002) ·Zbl 1024.65113
[20]Rabczuk, T.; Xiao, S. P.; Sauer, M., Coupling of mesh-free methods with finite elements: basic concepts and test results, Commun. Numer. Methods Eng., 22, 10, 1031-1065 (2006) ·Zbl 1109.65082
[22]Karutz, H.; Chudoba, R.; Krätzig, W., Automatic adaptive generation of a coupled finite element/element-free Galerkin discretization, Finite Elem. Anal. Des., 38, 11, 1075-1091 (2002) ·Zbl 0997.65136
[23]Liu, L.; Dong, X.; Li, C., Adaptive finite element-element-free Galerkin coupling method for bulk metal forming processes, J. Zhejiang Univ. Sci. A, 10, 353-360 (2009) ·Zbl 1422.74092
[24]Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24, 337-357 (1987) ·Zbl 0602.73063
[25]Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. J. Numer. Methods Eng., 33, 7, 1331-1364 (1992) ·Zbl 0769.73084
[26]Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, Int. J. Numer. Methods Eng., 33, 7, 1365-1382 (1992) ·Zbl 0769.73085
[27]Chung, H.-J.; Belytschko, T., An error estimate in the EFG method, Comput. Mech., 21, 91-100 (1998) ·Zbl 0910.73060
[28]Boroomand, B.; Zienkiewicz, O., Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour, Comput. Methods Appl. Mech. Eng., 176, 1-4, 127-146 (1999) ·Zbl 0955.74070
[29]Ullah, Z.; Augarde, C., Finite deformation elasto-plastic modelling using an adaptive meshless method, Comput. Struct., 118, 39-52 (2013)
[30]Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 379-423 (1948) ·Zbl 1154.94303
[31]Khinchin, A. I., Mathematical foundation of information theory (1957), Dover Publications, Inc.: Dover Publications, Inc. New York ·Zbl 0088.10404
[32]Jaynes, E. T., Information theory and statistical mechanics, Phys. Rev., 106, 620-630 (1957) ·Zbl 0084.43701
[33]Jaynes, E. T., Information theory and statistical mechanics - II, Phys. Rev., 108, 171-190 (1957) ·Zbl 0084.43701
[34]Sukumar, N., Construction of polygonal interpolants: a maximum entropy approach, Int. J. Numer. Methods Eng., 61, 2159-2181 (2004) ·Zbl 1073.65505
[35]Arroyo, M.; Ortiz, M., Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Int. J. Numer. Methods Eng., 65, 2167-2202 (2006) ·Zbl 1146.74048
[36]Sukumar, N.; Wright, R. W., Overview and construction of meshfree basis functions: from moving least squares to entropy approximants, Int. J. Numer. Methods Eng., 70, 181-205 (2007) ·Zbl 1194.65149
[37]Cyron, C. J.; Arroyo, M.; Ortiz, M., Smooth, second order, non-negative meshfree approximants selected by maximum entropy, Int. J. Numer. Methods Eng., 79, 13, 1605-1632 (2009) ·Zbl 1176.74208
[38]González, D.; Cueto, E.; Doblaré, M., A higher order method based on local maximum entropy approximation, Int. J. Numer. Methods Eng., 83, 6, 741-764 (2010) ·Zbl 1197.74193
[39]Rosolen, A.; Millán, D.; Arroyo, M., On the optimum support size in meshfree methods: a variational adaptivity approach with maximum-entropy approximants, Int. J. Numer. Methods Eng., 82, 7, 868-895 (2010) ·Zbl 1188.74086
[41]Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) ·Zbl 0764.65068
[42]Ji, W.; Waas, A. M.; Bazant, Z. P., Errors caused by non-work-conjugate stress and strain measures and necessary corrections in finite element programs, J. Appl. Mech., 77, 4, 044504 (2010), (1-5)
[44]Boroomand, B.; Zienkiewicz, O. C., Recovery by equilibrium in patches (REP), Int. J. Numer. Methods Eng., 40, 1, 137-164 (1997)
[45]Hu, Y.; Randolph, M. F., H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation, Comput. Geotech., 23, 1-2, 61-83 (1998)
[46]Kitanmra, M.; Gu, H.; Nobukawa, H., A study of applying the superconvergent patch recovery (SPR) method to large deformation problem, J. Soc. Naval Architects Jpn., 187, 201-208 (2000)
[47]Gu, H.; Zong, Z.; Hung, K., A modified superconvergent patch recovery method and its application to large deformation problems, Finite Elem. Anal. Des., 40, 665-687 (2004)
[48]Babuška, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, S. K.; Copps, K., Validation of a posteriori error estimators by numerical approach, Int. J. Numer. Methods Eng., 37, 7, 1073-1123 (1994) ·Zbl 0811.65088
[49]Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), John Wiley & Sons: John Wiley & Sons New York ·Zbl 1008.65076
[50]Choi, C. K.; Lee, N. H., A 3D adaptive mesh refinement using variable-node solid transition elements, Int. J. Numer. Methods Eng., 39, 9, 1585-1606 (1996) ·Zbl 0865.73058
[51]Moslemi, H.; Khoei, A., 3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method, Eng. Fract. Mech., 76, 11, 1703-1728 (2009)
[52]Xiaowei, T.; Tadanobu, S., Adaptive mesh refinement and error estimate for 3-D seismic analysis of liquefiable soil considering large deformation, J. Nat. Disaster Sci., 26, 1, 37-48 (2004)
[53]Khoei, A.; Gharehbaghi, S., The superconvergence patch recovery technique and data transfer operators in 3D plasticity problems, Finite Elem. Anal. Des., 43, 8, 630-648 (2007)
[54]Gharehbaghi, S.; Khoei, A., Three-dimensional superconvergent patch recovery method and its application to data transferring in small-strain plasticity, Comput. Mech., 41, 293-312 (2008) ·Zbl 1162.74463
[55]Khoei, A.; Gharehbaghi, S., Three-dimensional data transfer operators in large plasticity deformations using modified-SPR technique, Appl. Math. Modell., 33, 7, 3269-3285 (2009) ·Zbl 1205.74180
[56]Boussetta, R.; Fourment, L., A posteriori error estimation and three-dimensional adaptive remeshing: application to error control of non-steady metal forming simulations, AIP Conf. Proc., 712, 1, 2246-2251 (2004)
[57]Zienkiewicz, O.; Taylor, R., The Finite Element Method Set (2005), Elsevier Science ·Zbl 1084.74001
[58]Zienkiewicz, O. C.; Li, X. K.; Nakazawa, S., Iterative solution of mixed problems and the stress recovery procedures, Commun. Appl. Numer. Methods, 1, 1, 3-9 (1985) ·Zbl 0586.73127
[59]Babuška, I.; Miller, A., The post-processing approach in the finite element method - Part I: Calculation of displacements, stresses and other higher derivatives of the displacements, Int. J. Numer. Methods Eng., 20, 6, 1085-1109 (1984) ·Zbl 0535.73052
[60]Rabczuk, T.; Belytschko, T., Adaptivity for structured meshfree particle methods in 2D and 3D, Int. J. Numer. Methods Eng., 63, 11, 1559-1582 (2005) ·Zbl 1145.74041
[61]Feng, Y. T.; Perić, D., Coarse mesh evolution strategies in the Galerkin multigrid method with adaptive remeshing for geometrically non-linear problems, Int. J. Numer. Methods Eng., 49, 4, 547-571 (2000) ·Zbl 0987.74065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp