14N35 | Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) |
14M25 | Toric varieties, Newton polyhedra, Okounkov bodies |
[1] | T. Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc., 24 (2011), 969-998. ·Zbl 1234.14039 ·doi:10.1090/S0894-0347-2011-00701-7 |
[2] | G. Ellingsrud and S. Strömme, Towards the Chow ring of the Hilbert scheme of P ^2\(, J. Reine Angew. Math., 441 (1993), 33-44.\) ·Zbl 0814.14003 |
[3] | C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math., 139 (2000), 173-199. ·Zbl 0960.14031 ·doi:10.1007/s002229900028 |
[4] | T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math., 135 (1999), 487-518. ·Zbl 0953.14035 ·doi:10.1007/s002220050293 |
[5] | D. Joyce and Y. Song, A Theory of Generalized Donaldson-Thomas Invariants, Mem. Amer. Math. Soc., 217 , Amer. Math. Soc., Providence, RI, 2012. ·Zbl 1259.14054 ·doi:10.1090/S0065-9266-2011-00630-1 |
[6] | Y.-H. Kiem and J. Li, Localizing virtual cycles by cosections, arXiv: ·Zbl 1276.14083 ·doi:10.1090/S0894-0347-2013-00768-7 |
[7] | D. Maulik and A. Oblomkov, Quantum cohomology of the Hilbert scheme of points on \({\mathcal A}_n\)-resolutions, J. Amer. Math. Soc., 22 (2009), 1055-1091. ·Zbl 1215.14055 ·doi:10.1090/S0894-0347-09-00632-8 |
[8] | D. Maulik and A. Oblomkov, Donaldson-Thomas theory of \({\mathcal A}_n\times {\mathbb{P}}^1\), Compos. Math., 145 (2009), 1249-1276. ·Zbl 1188.14036 ·doi:10.1112/S0010437X09003972 |
[9] | D. Maulik, A. Oblomkov, A. Okounkov and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186 (2011), 435-479. ·Zbl 1232.14039 ·doi:10.1007/s00222-011-0322-y |
[10] | D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142 (2006), 1263-1285. ·Zbl 1108.14046 ·doi:10.1112/S0010437X06002302 |
[11] | D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math., 142 (2006), 1286-1304. ·Zbl 1108.14047 ·doi:10.1112/S0010437X06002314 |
[12] | D. Maulik and R. Pandharipande, A topological view of Gromov-Witten theory, Topology, 45 (2006), 887-918. ·Zbl 1112.14065 ·doi:10.1016/j.top.2006.06.002 |
[13] | D. Maulik, R. Pandharipande and R. P. Thomas, Curves on \(K3\) surfaces and modular forms, J. Topol., 3 (2010), 937-996. ·Zbl 1207.14058 ·doi:10.1112/jtopol/jtq030 |
[14] | A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math., 179 (2010), 523-557. ·Zbl 1198.14054 ·doi:10.1007/s00222-009-0223-5 |
[15] | A. Okounkov and R. Pandharipande, The local Donaldson-Thomas theory of curves, Geom. Topol., 14 (2010), 1503-1567. ·Zbl 1205.14067 ·doi:10.2140/gt.2010.14.1503 |
[16] | R. Pandharipande and A. Pixton, Descendents on local curves: Rationality, arXiv: ·Zbl 1376.14059 ·doi:10.1112/S0010437X12000498 |
[17] | R. Pandharipande and A. Pixton, Descendents on local curves: Stationary theory, arXiv: ·Zbl 1376.14059 ·doi:10.4171/119-1/17 |
[18] | R. Pandharipande and A. Pixton, Gromov-Witten/Pairs descendent correspondence for toric 3-folds, arXiv.1203.0468. ·Zbl 1342.14114 |
[19] | R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math., 178 (2009), 407-447. ·Zbl 1204.14026 ·doi:10.1007/s00222-009-0203-9 |
[20] | R. Pandharipande and R. P. Thomas, The 3-fold vertex via stable pairs, Geom. Topol., 13 (2009), 1835-1876. ·Zbl 1195.14073 ·doi:10.2140/gt.2009.13.1835 |
[21] | R. Pandharipande and R. P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc., 23 (2010), 267-297. ·Zbl 1250.14035 ·doi:10.1090/S0894-0347-09-00646-8 |
[22] | Y. Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, In: New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (RIMS, Kyoto, 2008), (ed. M.-H. Saito et al. ), Adv. Stud. Pure Math., 59 , Math. Soc. Japan, Tokyo, 2010, pp. 389-434. ·Zbl 1216.14009 |