Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Descendent theory for stable pairs on toric 3-folds.(English)Zbl 1285.14061

For a nonsingular threefold \(X\) the stable pair invariants are defined by virtual integration over the moduli space of stable pairs \((F,s)\) where \(F\) is a pure 1-dimensional sheaf on \(X\) and \(s:\mathcal{O}_X\to F\) is a section of \(F\) with 0-dimensional cokernel. Denote by \(P_n(X,\beta)\) this moduli space, where \(\beta \in H_2(X,\mathbb{Z})\) is the class of the support of \(F\) and \(n\) is the Euler characteristic of \(F\). For fixed \(\beta\) and \(\gamma_i\in H^*(X,\mathbb{Z})\) let \(Z_\beta^X(\prod_{j=1}^k \tau_{i_j}(\gamma_j))\) be the partition function of the stable pair invariants with \(k\) descendents \(\tau_{i_j}(\gamma_j)\). It is a Laurent series in a variable \(q\). It was conjectured in [R. Pandharipande andR. P. Thomas, Geom. Topol. 13, No. 4, 1835–1876 (2009;Zbl 1195.14073)] that \(Z_\beta^X(\prod_{j=1}^k \tau_{i_j}(\gamma_j))\) is a rational function in \(q\). The conjecture is known for the insertions of the form \(\tau_0(\gamma_i)\) when \(X\) is a toric or a Calabi-Yau threefold. If \(X\) is a local curve the conjecture is known for the insertions \(\tau_{>0}(\gamma_i)\). Rationality plays a crucial role in the study of Gromov-Witten/stable pair correspondence.
The paper under review proves a stronger equivariant version of this conjecture in the case that \(X\) is a toric threefold. The proof is based on the analysis of the capped 3-leg descendent vertex. The capped vertex was used in proving Gromov-Witten/Donaldson-Thomas correspondence by Maulik et al. The paper under review uses two geometric constraints involving \(\mathcal{A}_n\)-surfaces and Hirzebruch surfaces to reduce to the 1-leg case studied before in the local curve theory of stable pairs by the authors. It is proven in the paper under review that the partition function of capped 3-leg descendant vertex in the stable pair theory is a rational function in \(q\) and the equivariant variables. The rationality of the capped descendent vertex does not hold in Gromov-Witten and Donaldson-Thomas theories.
Suppose that \(X\) is a toric nonsingular projective threefold and \(S \subset X\) is a nonsingular anticanonical divisor isomorphic to a \(K3\) surface. As another consequence of the rationality result above, the paper under review proves that a certain partition function of stable pair invariants for the log Calabi-Yau geometry \((X,S)\) is also a rational function.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

Citations:

Zbl 1195.14073

Cite

References:

[1]T. Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc., 24 (2011), 969-998. ·Zbl 1234.14039 ·doi:10.1090/S0894-0347-2011-00701-7
[2]G. Ellingsrud and S. Strömme, Towards the Chow ring of the Hilbert scheme of P ^2\(, J. Reine Angew. Math., 441 (1993), 33-44.\) ·Zbl 0814.14003
[3]C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math., 139 (2000), 173-199. ·Zbl 0960.14031 ·doi:10.1007/s002229900028
[4]T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math., 135 (1999), 487-518. ·Zbl 0953.14035 ·doi:10.1007/s002220050293
[5]D. Joyce and Y. Song, A Theory of Generalized Donaldson-Thomas Invariants, Mem. Amer. Math. Soc., 217 , Amer. Math. Soc., Providence, RI, 2012. ·Zbl 1259.14054 ·doi:10.1090/S0065-9266-2011-00630-1
[6]Y.-H. Kiem and J. Li, Localizing virtual cycles by cosections, arXiv: ·Zbl 1276.14083 ·doi:10.1090/S0894-0347-2013-00768-7
[7]D. Maulik and A. Oblomkov, Quantum cohomology of the Hilbert scheme of points on \({\mathcal A}_n\)-resolutions, J. Amer. Math. Soc., 22 (2009), 1055-1091. ·Zbl 1215.14055 ·doi:10.1090/S0894-0347-09-00632-8
[8]D. Maulik and A. Oblomkov, Donaldson-Thomas theory of \({\mathcal A}_n\times {\mathbb{P}}^1\), Compos. Math., 145 (2009), 1249-1276. ·Zbl 1188.14036 ·doi:10.1112/S0010437X09003972
[9]D. Maulik, A. Oblomkov, A. Okounkov and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186 (2011), 435-479. ·Zbl 1232.14039 ·doi:10.1007/s00222-011-0322-y
[10]D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142 (2006), 1263-1285. ·Zbl 1108.14046 ·doi:10.1112/S0010437X06002302
[11]D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math., 142 (2006), 1286-1304. ·Zbl 1108.14047 ·doi:10.1112/S0010437X06002314
[12]D. Maulik and R. Pandharipande, A topological view of Gromov-Witten theory, Topology, 45 (2006), 887-918. ·Zbl 1112.14065 ·doi:10.1016/j.top.2006.06.002
[13]D. Maulik, R. Pandharipande and R. P. Thomas, Curves on \(K3\) surfaces and modular forms, J. Topol., 3 (2010), 937-996. ·Zbl 1207.14058 ·doi:10.1112/jtopol/jtq030
[14]A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math., 179 (2010), 523-557. ·Zbl 1198.14054 ·doi:10.1007/s00222-009-0223-5
[15]A. Okounkov and R. Pandharipande, The local Donaldson-Thomas theory of curves, Geom. Topol., 14 (2010), 1503-1567. ·Zbl 1205.14067 ·doi:10.2140/gt.2010.14.1503
[16]R. Pandharipande and A. Pixton, Descendents on local curves: Rationality, arXiv: ·Zbl 1376.14059 ·doi:10.1112/S0010437X12000498
[17]R. Pandharipande and A. Pixton, Descendents on local curves: Stationary theory, arXiv: ·Zbl 1376.14059 ·doi:10.4171/119-1/17
[18]R. Pandharipande and A. Pixton, Gromov-Witten/Pairs descendent correspondence for toric 3-folds, arXiv.1203.0468. ·Zbl 1342.14114
[19]R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math., 178 (2009), 407-447. ·Zbl 1204.14026 ·doi:10.1007/s00222-009-0203-9
[20]R. Pandharipande and R. P. Thomas, The 3-fold vertex via stable pairs, Geom. Topol., 13 (2009), 1835-1876. ·Zbl 1195.14073 ·doi:10.2140/gt.2009.13.1835
[21]R. Pandharipande and R. P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc., 23 (2010), 267-297. ·Zbl 1250.14035 ·doi:10.1090/S0894-0347-09-00646-8
[22]Y. Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, In: New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (RIMS, Kyoto, 2008), (ed. M.-H. Saito et al. ), Adv. Stud. Pure Math., 59 , Math. Soc. Japan, Tokyo, 2010, pp. 389-434. ·Zbl 1216.14009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp