Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Limiting Sobolev inequalities for vector fields and canceling linear differential operators.(English)Zbl 1284.46032

The paper deals with inequalities for homogeneous linear differential operators. More exactly, let \(A(D)\) be a homogeneous linear differential operator of order \(k\in {\mathbb N}\) on \({\mathbb R}^n\) from a vector space \(V\) to a vector space \(E\). Such an operator is called canceling if \[ \bigcup_{\xi \in {\mathbb R}^n\setminus \{0\}} A(\xi) [V] = \{0\}.\tag{1}\] Then it is proved that the estimate \[ \| D^{k-1} u \|_{L^{n/(n-1)}} \leq \| A(D) \|_{L^1}\] holds if and only if \(A(D)\) is elliptic and canceling. This result covers some classical inequalities like the Gagliardo-Nirenberg-Sobolev inequality, the Korn-Sobolev inequality and the Hodge-Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. Extensions of (1) like \[ \| D^{k-1} u \|_{\dot{F}^s_{p,q}} \leq \| A(D) \|_{L^1}, \] where \(\dot{F}^s_{p,q}\) is the homogeneous Triebel-Lizorkin space, and \[ \| D^{k-1} u \|_{\dot{B}^s_{p,q}} \leq \| A(D) \|_{L^1}, \] where \(\dot{B}^s_{p,q}\) is the homogeneous Besov space, are discussed as well.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26D10 Inequalities involving derivatives and differential and integral operators
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Cite

References:

[1]Adams, R. A.: Sobolev Spaces. Pure Appl. Math. 65, Academic Press, New York (1975) ·Zbl 0314.46030
[2]Agmon, S.: The Lp approach to the Dirichlet problem. I. Regularity theorems. Ann. Scuola Norm. Sup. Pisa (3) 13, 405-448 (1959) ·Zbl 0093.10601
[3]Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand Math. Stud. 2, Van Nostrand, Princeton, NJ (1965) ·Zbl 0142.37401
[4]Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A (5) 14, 148-156 (1977) ·Zbl 0352.46020
[5]Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York (1993) ·Zbl 0772.13010
[6]Bourgain, J., Brezis, H.: Sur l’équation div u = f . C. R. Math. Acad. Sci. Paris 334, 973-976 (2002) ·Zbl 0999.35020 ·doi:10.1016/S1631-073X(02)02344-0
[7]Bourgain, J., Brezis, H.: On the equation div Y = f and application to control of phases. J. Amer. Math. Soc. 16, 393-426 (2003) ·Zbl 1075.35006 ·doi:10.1090/S0894-0347-02-00411-3
[8]Bourgain, J., Brezis, H.: New estimates for the Laplacian, the div-curl, and related Hodge systems. C. R. Math. Acad. Sci. Paris 338, 539-543 (2004) ·Zbl 1101.35013 ·doi:10.1016/j.crma.2003.12.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp