Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Existence of doubling measures via generalised nested cubes.(English)Zbl 1277.28017

A metric space \(X\) is doubling if every closed ball of radius \(2r\) (\(B(x, 2r)\), \(x \in X\)) can be covered by finitely many balls of radius \(r\), with the number of such \(r\)-balls having an upper bound independent of \(x\) and \(r\). A Borel regular outer measure \(\mu\) on a metric space is doubling if there exists a constant \(D\), \(1 \leq D < \infty\), such that \(0< \mu(B(x,2r)) \leq D \mu(B(x,r))<\infty\). In a complete doubling metric space, the authors construct a nested family of “cubes” that share most of the desirable properties of dyadic cubes in Euclidean spaces, adapt an ultrametric on the “codes” (certain indices of the “cubes”), and obtain a doubling measure. The proof uses nested partitions and mass distribution principles, allowing the authors to directly obtain the result for the unbounded case. As an application, they show that for each \(\epsilon > 0\), there exists a doubling measure having full measure on a set of packing dimension at most \(\epsilon\), a result previously known only for the Hausdorff dimension (e.g. [J.-M. Wu, Proc. Am. Math. Soc. 126, No. 5, 1453–1459 (1998;Zbl 0897.28008)]).

MSC:

28C15 Set functions and measures on topological spaces (regularity of measures, etc.)
54E50 Complete metric spaces

Citations:

Zbl 0897.28008

Cite

References:

[1]Michael Christ, A \?(\?) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601 – 628. ·Zbl 0758.42009
[2]M. Csörnyei and V. Suomala. Cantor sets and doubling measures. Work in progress, 2010. ·Zbl 1253.28008
[3]Kenneth Falconer, Techniques in fractal geometry, John Wiley & Sons, Ltd., Chichester, 1997. ·Zbl 0869.28003
[4]Ai-Hua Fan, Ka-Sing Lau, and Hui Rao, Relationships between different dimensions of a measure, Monatsh. Math. 135 (2002), no. 3, 191 – 201. ·Zbl 0996.28001 ·doi:10.1007/s006050200016
[5]Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. ·Zbl 0040.16802
[6]Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. ·Zbl 0985.46008
[7]Yanick Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), no. 3, 309 – 338 (French, with English and French summaries). ·Zbl 0903.28005 ·doi:10.1016/S0246-0203(98)80014-9
[8]T. Hytönen and H. Martikainen. Non-homogeneous \( {Tb}\) theorem and random dyadic cubes on metric measure spaces. Preprint. arXiv:0911.4387, 2009. ·Zbl 1261.42017
[9]Esa Järvenpää, Maarit Järvenpää, Antti Käenmäki, Tapio Rajala, Sari Rogovin, and Ville Suomala, Packing dimension and Ahlfors regularity of porous sets in metric spaces, Math. Z. 266 (2010), no. 1, 83 – 105. ·Zbl 1203.28006 ·doi:10.1007/s00209-009-0555-2
[10]A. Käenmäki, T. Rajala, and V. Suomala. Local homogeneity and dimension of measures in doubling metric spaces. Preprint. arXiv:1003.2895, 2010.
[11]D. G. Larman, On Hausdorff measure in finite-dimensional compact metric spaces, Proc. London Math. Soc. (3) 17 (1967), 193 – 206. ·Zbl 0152.24503 ·doi:10.1112/plms/s3-17.2.193
[12]Jouni Luukkainen and Eero Saksman, Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998), no. 2, 531 – 534. ·Zbl 0897.28007
[13]Sze-Man Ngai, A dimension result arising from the \?^{\?}-spectrum of a measure, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2943 – 2951. ·Zbl 0886.28006
[14]C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. ·Zbl 0204.37601
[15]Eero Saksman, Remarks on the nonexistence of doubling measures, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 1, 155 – 163. ·Zbl 0957.28003
[16]Pekka Tukia, Hausdorff dimension and quasisymmetric mappings, Math. Scand. 65 (1989), no. 1, 152 – 160. ·Zbl 0677.30016 ·doi:10.7146/math.scand.a-12274
[17]A. L. Vol\(^{\prime}\)berg and S. V. Konyagin, A homogeneous measure exists on any compactum in \?\(^{n}\), Dokl. Akad. Nauk SSSR 278 (1984), no. 4, 783 – 786 (Russian).
[18]A. L. Vol\(^{\prime}\)berg and S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 666 – 675 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 629 – 638. ·Zbl 0649.42010
[19]Jang-Mei Wu, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc. 126 (1998), no. 5, 1453 – 1459. ·Zbl 0897.28008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp