[1] | Amir G., Corwin I., Quastel J.: Probability Distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Comm. Pure Appl. Math 64, 466-537 (2011) ·Zbl 1222.82070 ·doi:10.1002/cpa.20347 |
[2] | Auffinger A., Louidor O.: Directed polymers in random environment with heavy tails. Commun. Pure Appl. Math. 64, 183-204 (2011) ·Zbl 1210.82076 ·doi:10.1002/cpa.20348 |
[3] | Bertin, P.: Positivity of the Lyapunov exponent for Brownian directed polymer in random environment in dimension one and two. Preprint ·Zbl 0935.60099 |
[4] | Birman, M. Š., Solomjak, M.Z.: Piecewise polynomial approximations of functions of classes \[{W_p^{\alpha}}\] Wpα . (Russian) Mat. Sb. (N.S.) 73 (115), 331-355 (1967). English translation: Math. USSR-Sb. 2, 295-317 (1967) ·Zbl 0173.16001 |
[5] | Bolthausen E.: A note on diffusion of directed polymers in a random environment. Commun. Math. Phys. 123, 529-534 (1989) ·Zbl 0684.60013 ·doi:10.1007/BF01218584 |
[6] | Cadel A., Tindel S., Viens F.: Sharp asymptotics for the partition function of some continuous-time directed polymers. Pot. Anal. 29, 139-166 (2008) ·Zbl 1214.82133 ·doi:10.1007/s11118-008-9092-6 |
[7] | Carmona P., Hu Y.: On the partition function of a directed polymer in a random environment. Prob. Th. Rel. Fields 124, 431-457 (2002) ·Zbl 1015.60100 ·doi:10.1007/s004400200213 |
[8] | Comets, F., Cranston, M.: Overlaps and Pathwise Localization in the Anderson Polymer Model. http://arxiv.org/abs/1107.2011vZ [math.PR], 2012 ·Zbl 1290.60102 |
[9] | Comets F., Shiga T., Yoshida N.: Directed Polymers in Random Environment: Path Localization and Strong Disorder. Bernoulli 9, 705-723 (2003) ·Zbl 1042.60069 ·doi:10.3150/bj/1066223275 |
[10] | Comets F., Yoshida N.: Brownian directed polymers in random environment. Commun. Math. Phys. 254, 257-287 (2005) ·Zbl 1128.60089 ·doi:10.1007/s00220-004-1203-7 |
[11] | Comets F., Yoshida N.: Some new results on Brownian Directed Polymers in Random Environment. RIMS Kokyuroku 1386, 50-66 (2004) |
[12] | Corwin I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1, 1130001 (2012) ·Zbl 1247.82040 ·doi:10.1142/S2010326311300014 |
[13] | Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications, 2nd Ed. Berlin-Heidelberg-New York: Springer Verlag, 1998 ·Zbl 0896.60013 |
[14] | Donsker M.D., Varadhan S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. Comm. Pure Appl. Math. 28, 1-47 (1975) ·Zbl 0323.60069 ·doi:10.1002/cpa.3160280102 |
[15] | Georgiou, N., Seppäläinen, T.: Large deviation rate functions for the partition function in a log-gamma distributed random potential. http://arxiv.org/abs/1110.3544vZ [math.PR], 2012 ·Zbl 1291.60210 |
[16] | Giacomin G.: Random polymer models. Imperial College Press, London (2007) ·Zbl 1125.82001 ·doi:10.1142/9781860948299 |
[17] | Goodman V., Kuelbs J.: Rates of clustering in Strassen’s LIL for Brownian motion. J. Theoret. Probab. 4, 285-309 (1991) ·Zbl 0724.60034 ·doi:10.1007/BF01258738 |
[18] | Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1-12 (2003) ·Zbl 1013.82023 ·doi:10.1007/s00220-002-0773-5 |
[19] | Guerra F., Toninelli F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71-79 (2002) ·Zbl 1004.82004 ·doi:10.1007/s00220-002-0699-y |
[20] | Hambly B., Martin J.: Heavy tails in last-passage percolation. Prob. Th. Rel. Fields 137, 227-275 (2007) ·Zbl 1112.60079 ·doi:10.1007/s00440-006-0019-0 |
[21] | den Hollander, F.: Random polymers. 37th Probab. Summer Sch. Saint-Flour, 2007. Lecture Notes in Mathematics 1974, Berlin: Springer-Verlag, 2009 |
[22] | Imbrie J.Z., Spencer T.: Diffusion of directed polymer in a random environment. J. Stat. Phys. 52(3/4), 609-626 (1998) ·Zbl 1084.82595 |
[23] | Ioffe D., Velenik Y.: Crossing random walks and stretched polymers at weak disorder. Ann. Prob. 40, 714-742 (2012) ·Zbl 1251.60074 ·doi:10.1214/10-AOP625 |
[24] | Kallenberg, O.: Random measures. Berlin: Akademie-Verlag/ London: Academic Press, Inc., 1983 ·Zbl 0544.60053 |
[25] | Lacoin H.: New bounds for the free energy of directed polymers in dimension 1+1 and 1+2. Commun. Math. Phys. 294, 471-503 (2010) ·Zbl 1227.82098 ·doi:10.1007/s00220-009-0957-3 |
[26] | Lacoin H.: Influence of spatial correlation for directed polymers. Ann. Prob. 39, 139-175 (2011) ·Zbl 1208.82084 ·doi:10.1214/10-AOP553 |
[27] | Moreno Flores, G.: Asymmetric directed polymers in random environments. http://arxiv.org/abs/1009.5576v1 [math.PR], 2010 ·Zbl 1115.60107 |
[28] | Moriarty J., O’Connell N.: On the free energy of a directed polymer in a Brownian environment. Markov Proc. Rel. Fields 13, 251-266 (2007) ·Zbl 1132.60327 |
[29] | Newman, C.: Topics in disordered systems. Lectures Notes in Mathematics ETH Zürich. Basel: Birkhäuser, 1997 ·Zbl 0897.60093 |
[30] | O’Connell N., Yor M.: Brownian analogues of Burke’s theorem. Stoch. Proc. Appl. 96, 285-304 (2001) ·Zbl 1058.60078 ·doi:10.1016/S0304-4149(01)00119-3 |
[31] | Rovira C., Tindel S.: On the Brownian-directed polymer in a Gaussian random environment. J. Funct. Anal. 222, 178-201 (2005) ·Zbl 1115.60107 ·doi:10.1016/j.jfa.2004.07.017 |
[32] | Seppäläinen T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40, 19-73 (2012) ·Zbl 1254.60098 ·doi:10.1214/10-AOP617 |
[33] | Shiozawa Y.: Central limit theorem for branching Brownian motions in random environment. J. Stat. Phys. 136, 145-163 (2009) ·Zbl 1171.60024 ·doi:10.1007/s10955-009-9774-5 |
[34] | Shiozawa Y.: Localization for branching Brownian motions in random environment. Tohoku Math. J. (2) 61(4), 483-497 (2009) ·Zbl 1187.60092 ·doi:10.2748/tmj/1264084496 |
[35] | Stoyan D., Kendall W.S., Mecke J.: Stochastic Geometry and its Applications. John Wiley & Sons, New York (1987) ·Zbl 0622.60019 |
[36] | Stroock D., Varadhan S.R.S.: Multidimensional diffusion processes. Springer-Verlag, Berlin (1979) ·Zbl 0426.60069 |
[37] | Sznitman, A.-S., : Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics, Berlin-Heidelberg-New York: Springer, 1998 ·Zbl 0973.60003 |
[38] | Talagrand, M.: Mean field models for spin glasses. Volume I. Basic examples. Ergebnisse der Mathematik und ihrer Grenzgebiete, 54. Berlin: Springer-Verlag, 2011 ·Zbl 1214.82002 |
[39] | Vargas V.: Strong localization and macroscopic atoms for directed polymers. Prob. Th. Rel. Fields 138, 391-410 (2007) ·Zbl 1113.60097 ·doi:10.1007/s00440-006-0030-5 |
[40] | Wüthrich Mario V.: Superdiffusive behavior of two-dimensional Brownian motion in a Poissonian potential. Ann. Prob. 26(3), 1000-1015 (1998) ·Zbl 0935.60099 ·doi:10.1214/aop/1022855742 |
[41] | Zygouras, N.: Strong disorder in semidirected random polymers. Ann. Inst. Henri Poincaré (B) Prob. Stat. (to appear) http://arxiv.org/abs/1009.2693vZ [math.PR], 2010 ·Zbl 1290.82013 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.