Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Localization transition for polymers in Poissonian medium.(English)Zbl 1276.82066

Summary: We study a model of directed polymers in random environment in dimension \(1 + d\), given by a Brownian motion in a Poissonian potential. We study the effect of the density and the strength of inhomogeneities, respectively, the intensity parameter \(\nu \) of the Poisson field and temperature inverse \(\beta \). We obtain (i) fine information on the phase diagram, with quantitative estimates on the critical curve; (ii) pathwise localization at low temperature and/or large density; (iii) complete localization in a favourite corridor for large \(\nu \beta ^{2}\) and bounded \(\beta \).

MSC:

82D60 Statistical mechanics of polymers
60J65 Brownian motion
60K37 Processes in random environments
82B27 Critical phenomena in equilibrium statistical mechanics

Cite

References:

[1]Amir G., Corwin I., Quastel J.: Probability Distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Comm. Pure Appl. Math 64, 466-537 (2011) ·Zbl 1222.82070 ·doi:10.1002/cpa.20347
[2]Auffinger A., Louidor O.: Directed polymers in random environment with heavy tails. Commun. Pure Appl. Math. 64, 183-204 (2011) ·Zbl 1210.82076 ·doi:10.1002/cpa.20348
[3]Bertin, P.: Positivity of the Lyapunov exponent for Brownian directed polymer in random environment in dimension one and two. Preprint ·Zbl 0935.60099
[4]Birman, M. Š., Solomjak, M.Z.: Piecewise polynomial approximations of functions of classes \[{W_p^{\alpha}}\] Wpα . (Russian) Mat. Sb. (N.S.) 73 (115), 331-355 (1967). English translation: Math. USSR-Sb. 2, 295-317 (1967) ·Zbl 0173.16001
[5]Bolthausen E.: A note on diffusion of directed polymers in a random environment. Commun. Math. Phys. 123, 529-534 (1989) ·Zbl 0684.60013 ·doi:10.1007/BF01218584
[6]Cadel A., Tindel S., Viens F.: Sharp asymptotics for the partition function of some continuous-time directed polymers. Pot. Anal. 29, 139-166 (2008) ·Zbl 1214.82133 ·doi:10.1007/s11118-008-9092-6
[7]Carmona P., Hu Y.: On the partition function of a directed polymer in a random environment. Prob. Th. Rel. Fields 124, 431-457 (2002) ·Zbl 1015.60100 ·doi:10.1007/s004400200213
[8]Comets, F., Cranston, M.: Overlaps and Pathwise Localization in the Anderson Polymer Model. http://arxiv.org/abs/1107.2011vZ [math.PR], 2012 ·Zbl 1290.60102
[9]Comets F., Shiga T., Yoshida N.: Directed Polymers in Random Environment: Path Localization and Strong Disorder. Bernoulli 9, 705-723 (2003) ·Zbl 1042.60069 ·doi:10.3150/bj/1066223275
[10]Comets F., Yoshida N.: Brownian directed polymers in random environment. Commun. Math. Phys. 254, 257-287 (2005) ·Zbl 1128.60089 ·doi:10.1007/s00220-004-1203-7
[11]Comets F., Yoshida N.: Some new results on Brownian Directed Polymers in Random Environment. RIMS Kokyuroku 1386, 50-66 (2004)
[12]Corwin I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1, 1130001 (2012) ·Zbl 1247.82040 ·doi:10.1142/S2010326311300014
[13]Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications, 2nd Ed. Berlin-Heidelberg-New York: Springer Verlag, 1998 ·Zbl 0896.60013
[14]Donsker M.D., Varadhan S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. Comm. Pure Appl. Math. 28, 1-47 (1975) ·Zbl 0323.60069 ·doi:10.1002/cpa.3160280102
[15]Georgiou, N., Seppäläinen, T.: Large deviation rate functions for the partition function in a log-gamma distributed random potential. http://arxiv.org/abs/1110.3544vZ [math.PR], 2012 ·Zbl 1291.60210
[16]Giacomin G.: Random polymer models. Imperial College Press, London (2007) ·Zbl 1125.82001 ·doi:10.1142/9781860948299
[17]Goodman V., Kuelbs J.: Rates of clustering in Strassen’s LIL for Brownian motion. J. Theoret. Probab. 4, 285-309 (1991) ·Zbl 0724.60034 ·doi:10.1007/BF01258738
[18]Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1-12 (2003) ·Zbl 1013.82023 ·doi:10.1007/s00220-002-0773-5
[19]Guerra F., Toninelli F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71-79 (2002) ·Zbl 1004.82004 ·doi:10.1007/s00220-002-0699-y
[20]Hambly B., Martin J.: Heavy tails in last-passage percolation. Prob. Th. Rel. Fields 137, 227-275 (2007) ·Zbl 1112.60079 ·doi:10.1007/s00440-006-0019-0
[21]den Hollander, F.: Random polymers. 37th Probab. Summer Sch. Saint-Flour, 2007. Lecture Notes in Mathematics 1974, Berlin: Springer-Verlag, 2009
[22]Imbrie J.Z., Spencer T.: Diffusion of directed polymer in a random environment. J. Stat. Phys. 52(3/4), 609-626 (1998) ·Zbl 1084.82595
[23]Ioffe D., Velenik Y.: Crossing random walks and stretched polymers at weak disorder. Ann. Prob. 40, 714-742 (2012) ·Zbl 1251.60074 ·doi:10.1214/10-AOP625
[24]Kallenberg, O.: Random measures. Berlin: Akademie-Verlag/ London: Academic Press, Inc., 1983 ·Zbl 0544.60053
[25]Lacoin H.: New bounds for the free energy of directed polymers in dimension 1+1 and 1+2. Commun. Math. Phys. 294, 471-503 (2010) ·Zbl 1227.82098 ·doi:10.1007/s00220-009-0957-3
[26]Lacoin H.: Influence of spatial correlation for directed polymers. Ann. Prob. 39, 139-175 (2011) ·Zbl 1208.82084 ·doi:10.1214/10-AOP553
[27]Moreno Flores, G.: Asymmetric directed polymers in random environments. http://arxiv.org/abs/1009.5576v1 [math.PR], 2010 ·Zbl 1115.60107
[28]Moriarty J., O’Connell N.: On the free energy of a directed polymer in a Brownian environment. Markov Proc. Rel. Fields 13, 251-266 (2007) ·Zbl 1132.60327
[29]Newman, C.: Topics in disordered systems. Lectures Notes in Mathematics ETH Zürich. Basel: Birkhäuser, 1997 ·Zbl 0897.60093
[30]O’Connell N., Yor M.: Brownian analogues of Burke’s theorem. Stoch. Proc. Appl. 96, 285-304 (2001) ·Zbl 1058.60078 ·doi:10.1016/S0304-4149(01)00119-3
[31]Rovira C., Tindel S.: On the Brownian-directed polymer in a Gaussian random environment. J. Funct. Anal. 222, 178-201 (2005) ·Zbl 1115.60107 ·doi:10.1016/j.jfa.2004.07.017
[32]Seppäläinen T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40, 19-73 (2012) ·Zbl 1254.60098 ·doi:10.1214/10-AOP617
[33]Shiozawa Y.: Central limit theorem for branching Brownian motions in random environment. J. Stat. Phys. 136, 145-163 (2009) ·Zbl 1171.60024 ·doi:10.1007/s10955-009-9774-5
[34]Shiozawa Y.: Localization for branching Brownian motions in random environment. Tohoku Math. J. (2) 61(4), 483-497 (2009) ·Zbl 1187.60092 ·doi:10.2748/tmj/1264084496
[35]Stoyan D., Kendall W.S., Mecke J.: Stochastic Geometry and its Applications. John Wiley & Sons, New York (1987) ·Zbl 0622.60019
[36]Stroock D., Varadhan S.R.S.: Multidimensional diffusion processes. Springer-Verlag, Berlin (1979) ·Zbl 0426.60069
[37]Sznitman, A.-S., : Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics, Berlin-Heidelberg-New York: Springer, 1998 ·Zbl 0973.60003
[38]Talagrand, M.: Mean field models for spin glasses. Volume I. Basic examples. Ergebnisse der Mathematik und ihrer Grenzgebiete, 54. Berlin: Springer-Verlag, 2011 ·Zbl 1214.82002
[39]Vargas V.: Strong localization and macroscopic atoms for directed polymers. Prob. Th. Rel. Fields 138, 391-410 (2007) ·Zbl 1113.60097 ·doi:10.1007/s00440-006-0030-5
[40]Wüthrich Mario V.: Superdiffusive behavior of two-dimensional Brownian motion in a Poissonian potential. Ann. Prob. 26(3), 1000-1015 (1998) ·Zbl 0935.60099 ·doi:10.1214/aop/1022855742
[41]Zygouras, N.: Strong disorder in semidirected random polymers. Ann. Inst. Henri Poincaré (B) Prob. Stat. (to appear) http://arxiv.org/abs/1009.2693vZ [math.PR], 2010 ·Zbl 1290.82013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp