76T99 | Multiphase and multicomponent flows |
35Q30 | Navier-Stokes equations |
35Q35 | PDEs in connection with fluid mechanics |
76D03 | Existence, uniqueness, and regularity theory for incompressible viscous fluids |
76D05 | Navier-Stokes equations for incompressible viscous fluids |
76D27 | Other free boundary flows; Hele-Shaw flows |
76D45 | Capillarity (surface tension) for incompressible viscous fluids |
[1] | Abels, H.: Diffuse Interface Models for Two-Phase Flows of Viscous Incompressible Fluids. Habilitation Thesis, Leipzig (2007) ·Zbl 1124.35060 |
[2] | Abels H.: Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Comm. Math. Phys. 289, 45-73 (2009) ·Zbl 1165.76050 ·doi:10.1007/s00220-009-0806-4 |
[3] | Abels H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Rat. Mech. Anal. 194, 463-506 (2009) ·Zbl 1254.76158 ·doi:10.1007/s00205-008-0160-2 |
[4] | Abels H.: Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J. Math. Anal. 44(1), 316-340 (2012) ·Zbl 1333.76079 ·doi:10.1137/110829246 |
[5] | Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent diffuse interface models for incompressible two-phase flows with different densities. preprint Nr. 20/2010 University Regensburg (2010) ·Zbl 1242.76342 |
[6] | Abels H., Garcke H., Grün G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Meth. Appl. Sci. 22(3), 1150013 (2011) ·Zbl 1242.76342 ·doi:10.1142/S0218202511500138 |
[7] | Abels H., Röger M.: Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2403-2424 (2009) ·Zbl 1181.35343 ·doi:10.1016/j.anihpc.2009.06.002 |
[8] | Abels H., Wilke M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlin. Anal. 67, 3176-3193 (2007) ·Zbl 1121.35018 ·doi:10.1016/j.na.2006.10.002 |
[9] | Amann H.: Linear and Quasilinear Parabolic Problems, vol. 1: Abstract Linear Theory. Birkhäuser, Basel (1995) ·Zbl 0819.35001 ·doi:10.1007/978-3-0348-9221-6 |
[10] | Anderson, D.-M., McFadden, G.B., Wheeler, A.A.: Diffuse interface methods in fluid mechanics. Annu. Rev. Fluid Mech., vol. 30, pp. 139-165. Annual Reviews, Paolo Alto (1998) ·Zbl 1398.76051 |
[11] | Bergh J., Löfström J.: Interpolation Spaces. Springer, Berlin (1976) ·Zbl 0344.46071 ·doi:10.1007/978-3-642-66451-9 |
[12] | Boyer F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175-212 (1999) ·Zbl 0937.35123 |
[13] | Boyer F.: Nonhomogeneous Cahn-Hilliard fluids. Ann. Inst. H. Poincar Anal. Non Linaire 18(2), 225-259 (2001) ·Zbl 1037.76062 ·doi:10.1016/S0294-1449(00)00063-9 |
[14] | Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28(2), 258-267 (1958) ·Zbl 1431.35066 ·doi:10.1063/1.1744102 |
[15] | Diestel, J., Uhl, J.J., Jr.: Vector Measures. Am. Math. Soc., Providence (1977) ·Zbl 0369.46039 |
[16] | Ding H., Spelt P.D.M., Shu C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comp. Phys. 22, 2078-2095 (2007) ·Zbl 1388.76403 ·doi:10.1016/j.jcp.2007.06.028 |
[17] | Gurtin M.E., Polignone D., Viñals J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci. 6(6), 815-831 (1996) ·Zbl 0857.76008 ·doi:10.1142/S0218202596000341 |
[18] | Hohenberg P.C., Halperin B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435-479 (1977) ·doi:10.1103/RevModPhys.49.435 |
[19] | Lions J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non linéaires. Dunod, Paris (1969) ·Zbl 0189.40603 |
[20] | Lions P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1, Incompressible Models. Clarendon Press, Oxford (1996) ·Zbl 0866.76002 |
[21] | Liu C., Shen J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3-4), 211-228 (2003) ·Zbl 1092.76069 ·doi:10.1016/S0167-2789(03)00030-7 |
[22] | Lowengrub J., Truskinovsky L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617-2654 (1998) ·Zbl 0927.76007 ·doi:10.1098/rspa.1998.0273 |
[23] | Roubíček T.: A generalization of the Lions-Temam compact embedding theorem. Časopis Pěst Mat. 115(4), 338-342 (1990) ·Zbl 0755.46013 |
[24] | Showalter R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. AMS, Providence (1997) ·Zbl 0870.35004 |
[25] | Simon J.: Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146(4), 65-96 (1987) ·Zbl 0629.46031 |
[26] | Sohr, H.: The Navier-Stokes Equations. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (2001) ·Zbl 0983.35004 |
[27] | Starovoĭtov, V.N.: On the motion of a two-component fluid in the presence of capillary forces. Mat. Zametki 62(2), 293-305 (1997) transl. in Math. Notes, 62(1-2), 244-254 (1997) ·Zbl 0921.35134 |
[28] | Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) ·Zbl 0207.13501 |
[29] | Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) ·Zbl 0387.46032 |
[30] | Zeidler E.: Nonlinear Functional Analysis and its Applications I. Springer, New York (1992) |