Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The dynamical behaviors of a Ivlev-type two-prey two-predator system with impulsive effect.(English)Zbl 1273.34053

Summary: Considering the strategy of integrated pest management (IPM), a class of two-prey two-predator system with the Ivlev-type functional response and impulsive effect at different fixed times is established. By using impulsive comparison theorem, Floquent theory and small amplitude perturbation, the sufficient conditions for the system to be extinct of prey and permanence are proved. Moreover, we give two sufficient conditions for the extinction of one of two prey species and the permanence of the remaining three species. A numerical simulation shows that there exist complex dynamics in the system, such as symmetry-breaking pitchfork bifurcation, periodic doubling bifurcation, chaos and periodic halving cascade. Finally, a brief discussion is given.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34A37 Ordinary differential equations with impulses
34D05 Asymptotic properties of solutions to ordinary differential equations
92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations

Cite

References:

[1]P. DeBach, Biological control of insect pests and weeds, New York: Reinhold, 1964.
[2]J. C. Van Lenteren, Measures of success in biological control of anthropoids by augmentation of natural enemies, Kluwer Academic Publishers, 2000.
[3]J. Grasman, O. A. Van Herwaarden and L. Hemerik, ect, A two-component model of host-parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control, Math. Biosci., 169 (2001), 7–16. ·Zbl 0966.92026 ·doi:10.1016/S0025-5564(00)00051-1
[4]D. Dent, Integrated pest management, London: Chapman & Hall, 1995.
[5]S. Y. Tang, Y. N. Xiao, L. S. Chen and R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bulletin of Mathematical Biology, 67 (2005), 115–135. ·Zbl 1334.91058 ·doi:10.1016/j.bulm.2004.06.005
[6]Z. J. Liu and R. H. Tan, Impulsive harvesting and stocking in a Monod-Haldane functional response predator-prey system, Chaos. Soliton. Fractal., 34 (2007), 454–464. ·Zbl 1127.92045 ·doi:10.1016/j.chaos.2006.03.054
[7]B. Liu, Y. J. Zhang and L. S. Chen, The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management, Nonlinear Analysis: Real World Applications, 6 (2005), 227–243. ·Zbl 1082.34039 ·doi:10.1016/j.nonrwa.2004.08.001
[8]D. D. Bainov and P. S. Simeonov, Systems with impulse effect: Stability, Theory and Applications, Ellis Horwood series Limited, Chichester, 1989. ·Zbl 0676.34035
[9]D. D. Bainov and P. S. Simeonov, Impulsive differential equations: periodic solutions and applications, Longman Group UK Limited, 1993. ·Zbl 0815.34001
[10]G. Z. Zeng, L. S. Chen and L. H. Sun, Complexity of an SIR epidemic dynamics model with impulsivevaccination control, Chaos. Soliton. Fractal., 26 (2005), 495–505. ·Zbl 1065.92050 ·doi:10.1016/j.chaos.2005.01.021
[11]B. Shulgin, L. Stone and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Modelling, 31 (2000), 207–215. ·Zbl 1043.92527 ·doi:10.1016/S0895-7177(00)00040-6
[12]A. Lakmeche and O. Arino, Bifurcation of non trivial periodic solutions of impulsive differtial equations arising chenmotherapeutic treatment, Dyn. Contin. Discrete Impuls. syst., 7(2) (2000), 265–287. ·Zbl 1011.34031
[13]S. Y Tang and L. S. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences, J. Math. Biol, 44(2) (2002), 85–99. ·Zbl 0990.92033 ·doi:10.1007/s002850100121
[14]R. M. May, Necessity and chance: deterministic dhaos in ecolgy and evolution, Am. Math. Soc., 32 (1995), 291–308. ·Zbl 0848.92021 ·doi:10.1090/S0273-0979-1995-00598-7
[15]W. M. Wang, H. L. Wang and Z. Q. Li, Chaotic behavior of a three-species Beddington-type system with impulsive perturbations, Chaos. Soliton. Fractal, 37(2) (2008), 438–443. ·doi:10.1016/j.chaos.2006.09.013
[16]G. R. Jiang, Q. S. Lu and L. N. Qian, Chaos and its control in an impulsive differential system, Chaos. Soliton. Fractal, 34 (2007), 1135–1147. ·Zbl 1142.93424 ·doi:10.1016/j.chaos.2006.04.024
[17]G. Y. Chen, Z. D. Teng and Z. Y. Hu, Analysis of stability for a discrete ratio-dependent predator-prey system, Indian J. Pure Appl. Math., 42(1) (2011), 1–26. ·Zbl 1308.39011 ·doi:10.1007/s13226-011-0001-0
[18]V. S. Ivlev, Experimental ecology of the feeding of fishes, New Haven, CT: Yale University Press, 1961.
[19]J. W. Feng and S. H. Chen, Global asymptotic behavior for the copeting predator of the Ivlev-type, J. Math. Appl., 13(4) (2000), 85–88. ·Zbl 1037.92029
[20]J. Sugie, Two-parameter bifurcation in a predator-prey system of Ivlev type, J. Math. Anal. Appl., 217(2) (1998), 349–371. ·Zbl 0894.34025 ·doi:10.1006/jmaa.1997.5700
[21]Z. Y. Xiang and X. Y Song, The dynamical behaviors of a food chain model with impulsive effect and Ivlev functional response, Chaos. Soliton. Fractal., 39(5) (2009), 2282–2293. ·Zbl 1197.34012 ·doi:10.1016/j.chaos.2007.06.124
[22]L. Wang and X. L. Fu, A new comparison principle for impulsive differential systems with variable impulsive perturbations and stability theory, Comput. Math. Appl., 54(5) (2007), 730–736. ·Zbl 1155.34346 ·doi:10.1016/j.camwa.2006.09.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp