34C60 | Qualitative investigation and simulation of ordinary differential equation models |
34C10 | Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations |
34A37 | Ordinary differential equations with impulses |
34D05 | Asymptotic properties of solutions to ordinary differential equations |
92D25 | Population dynamics (general) |
34C23 | Bifurcation theory for ordinary differential equations |
34C28 | Complex behavior and chaotic systems of ordinary differential equations |
[1] | P. DeBach, Biological control of insect pests and weeds, New York: Reinhold, 1964. |
[2] | J. C. Van Lenteren, Measures of success in biological control of anthropoids by augmentation of natural enemies, Kluwer Academic Publishers, 2000. |
[3] | J. Grasman, O. A. Van Herwaarden and L. Hemerik, ect, A two-component model of host-parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control, Math. Biosci., 169 (2001), 7–16. ·Zbl 0966.92026 ·doi:10.1016/S0025-5564(00)00051-1 |
[4] | D. Dent, Integrated pest management, London: Chapman & Hall, 1995. |
[5] | S. Y. Tang, Y. N. Xiao, L. S. Chen and R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bulletin of Mathematical Biology, 67 (2005), 115–135. ·Zbl 1334.91058 ·doi:10.1016/j.bulm.2004.06.005 |
[6] | Z. J. Liu and R. H. Tan, Impulsive harvesting and stocking in a Monod-Haldane functional response predator-prey system, Chaos. Soliton. Fractal., 34 (2007), 454–464. ·Zbl 1127.92045 ·doi:10.1016/j.chaos.2006.03.054 |
[7] | B. Liu, Y. J. Zhang and L. S. Chen, The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management, Nonlinear Analysis: Real World Applications, 6 (2005), 227–243. ·Zbl 1082.34039 ·doi:10.1016/j.nonrwa.2004.08.001 |
[8] | D. D. Bainov and P. S. Simeonov, Systems with impulse effect: Stability, Theory and Applications, Ellis Horwood series Limited, Chichester, 1989. ·Zbl 0676.34035 |
[9] | D. D. Bainov and P. S. Simeonov, Impulsive differential equations: periodic solutions and applications, Longman Group UK Limited, 1993. ·Zbl 0815.34001 |
[10] | G. Z. Zeng, L. S. Chen and L. H. Sun, Complexity of an SIR epidemic dynamics model with impulsivevaccination control, Chaos. Soliton. Fractal., 26 (2005), 495–505. ·Zbl 1065.92050 ·doi:10.1016/j.chaos.2005.01.021 |
[11] | B. Shulgin, L. Stone and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Modelling, 31 (2000), 207–215. ·Zbl 1043.92527 ·doi:10.1016/S0895-7177(00)00040-6 |
[12] | A. Lakmeche and O. Arino, Bifurcation of non trivial periodic solutions of impulsive differtial equations arising chenmotherapeutic treatment, Dyn. Contin. Discrete Impuls. syst., 7(2) (2000), 265–287. ·Zbl 1011.34031 |
[13] | S. Y Tang and L. S. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences, J. Math. Biol, 44(2) (2002), 85–99. ·Zbl 0990.92033 ·doi:10.1007/s002850100121 |
[14] | R. M. May, Necessity and chance: deterministic dhaos in ecolgy and evolution, Am. Math. Soc., 32 (1995), 291–308. ·Zbl 0848.92021 ·doi:10.1090/S0273-0979-1995-00598-7 |
[15] | W. M. Wang, H. L. Wang and Z. Q. Li, Chaotic behavior of a three-species Beddington-type system with impulsive perturbations, Chaos. Soliton. Fractal, 37(2) (2008), 438–443. ·doi:10.1016/j.chaos.2006.09.013 |
[16] | G. R. Jiang, Q. S. Lu and L. N. Qian, Chaos and its control in an impulsive differential system, Chaos. Soliton. Fractal, 34 (2007), 1135–1147. ·Zbl 1142.93424 ·doi:10.1016/j.chaos.2006.04.024 |
[17] | G. Y. Chen, Z. D. Teng and Z. Y. Hu, Analysis of stability for a discrete ratio-dependent predator-prey system, Indian J. Pure Appl. Math., 42(1) (2011), 1–26. ·Zbl 1308.39011 ·doi:10.1007/s13226-011-0001-0 |
[18] | V. S. Ivlev, Experimental ecology of the feeding of fishes, New Haven, CT: Yale University Press, 1961. |
[19] | J. W. Feng and S. H. Chen, Global asymptotic behavior for the copeting predator of the Ivlev-type, J. Math. Appl., 13(4) (2000), 85–88. ·Zbl 1037.92029 |
[20] | J. Sugie, Two-parameter bifurcation in a predator-prey system of Ivlev type, J. Math. Anal. Appl., 217(2) (1998), 349–371. ·Zbl 0894.34025 ·doi:10.1006/jmaa.1997.5700 |
[21] | Z. Y. Xiang and X. Y Song, The dynamical behaviors of a food chain model with impulsive effect and Ivlev functional response, Chaos. Soliton. Fractal., 39(5) (2009), 2282–2293. ·Zbl 1197.34012 ·doi:10.1016/j.chaos.2007.06.124 |
[22] | L. Wang and X. L. Fu, A new comparison principle for impulsive differential systems with variable impulsive perturbations and stability theory, Comput. Math. Appl., 54(5) (2007), 730–736. ·Zbl 1155.34346 ·doi:10.1016/j.camwa.2006.09.015 |