Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On prime power order elements of general linear groups.(English)Zbl 1267.20068

Summary: We classify the absolutely irreducible subgroups \(G\leqslant\mathrm{GL}_d(q)\) which are not realizable modulo scalars over any proper subfield of \(\mathrm{GF}(q)\), which are “nearly simple”, and which contain elements of prime power order greater than \(d/3\).

MSC:

20G40 Linear algebraic groups over finite fields
20D05 Finite simple groups and their classification
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20C33 Representations of finite groups of Lie type

Cite

References:

[1]Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., An ATLAS of Finite Groups (1985), Clarendon Press: Clarendon Press Oxford ·Zbl 0568.20001
[2]J. DiMuro, On prime power elements of \(\mathit{GL}_d(q)\); J. DiMuro, On prime power elements of \(\mathit{GL}_d(q)\)
[3]Gorenstein, D.; Lyons, R.; Solomon, R., The Classification of the Finite Simple Groups, Number 3, Math. Surveys Monogr., vol. 40 (1998), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0890.20012
[4]Guralnick, R. M.; Magaard, K.; Saxl, J.; Tiep, Pham Huu, Cross characteristic representations of symplectic groups and unitary groups, J. Algebra, 257, 291-347 (2002) ·Zbl 1025.20002
[5]Guralnick, R. M.; Penttila, T.; Praeger, C. E.; Saxl, J., Linear groups with orders having certain large prime divisors, Proc. Lond. Math. Soc., 78, 167-214 (1999) ·Zbl 1041.20035
[6]Guralnick, R. M.; Tiep, Pham Huu, Low-dimensional representations of special linear groups in cross characteristics, Proc. Lond. Math. Soc., 78, 116-138 (1999) ·Zbl 0974.20014
[7]Hiss, G.; Malle, G., Corrigenda: Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math., 5, 95-126 (2002) ·Zbl 1053.20504
[8]Hiss, G.; Malle, G., Low-dimensional representations of special unitary groups, J. Algebra, 236, 745-767 (2001) ·Zbl 0972.20027
[9]Jansen, C., The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math., 8, 122-144 (2005) ·Zbl 1089.20006
[10]Jansen, C.; Lux, K.; Parker, R. A.; Wilson, R. A., An ATLAS of Brauer Characters (1995), Oxford University Press: Oxford University Press Oxford ·Zbl 0831.20001
[11]Kleidman, P. B.; Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser., vol. 129 (1990), Cambridge University Press ·Zbl 0697.20004
[12]Kantor, W. M.; Seress, A., Prime power graphs for groups of Lie type, J. Algebra, 247, 370-434 (2002) ·Zbl 0997.20018
[13]Liebeck, M. W.; Praeger, C. E.; Saxl, J., The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., 86, 432 (1990) ·Zbl 0703.20021
[14]Nagell, T., Introduction to Number Theory (1951), Wiley and Sons: Wiley and Sons New York ·Zbl 0042.26702
[15]Voight, J., On the nonexistence of odd perfect numbers, (MASS Selecta (2003), American Mathematical Society: American Mathematical Society Providence, RI), 293-300 ·Zbl 1083.11008
[16]Schönert, Martin, GAP - Groups, Algorithms, and Programming - version 3 release 4 patchlevel 4 (1997), Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule: Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule Aachen, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp