Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Representations of quiver Hecke algebras via Lyndon bases.(English)Zbl 1264.20006

This paper completes the classification of simple modules over quiver Hecke algebras (also known as Khovanov-Lauda-Rouquier algebras or KLR-algebras) associated to Cartan data of finite type. The main result provides a classification of all cuspidal representations of a quiver Hecke algebra of finite type. The paper contains several rather technical parts where some representations are constructed and checked by brute force. At the same time, some constructions of the paper produce much “smaller” and easier results than the corresponding original constructions ofA. Kleshchev andA. Ram [Math. Ann. 349, No. 4, 943-975 (2011;Zbl 1267.20010)].

MSC:

20C08 Hecke algebras and their representations
17B37 Quantum groups (quantized enveloping algebras) and related deformations
05E10 Combinatorial aspects of representation theory
16G20 Representations of quivers and partially ordered sets

Citations:

Zbl 1267.20010

Cite

References:

[1]Arakawa, T.; Suzuki, T., Duality between \(s l_n(C)\) and the degenerate affine Hecke algebra of type \(A\), J. Algebra, 209, 288-304 (1998) ·Zbl 0919.17005
[2]Bernstein, I. N.; Zelevinsky, A. V., Induced representations of reductive \(p\)-adic groups, I, Ann. Sci. École Norm. Sup., 10, 441-472 (1977) ·Zbl 0412.22015
[3]Brundan, J.; Kleshchev, A., Hecke-Clifford Superalgebras, Crystals of Type \(A_{2 l}^{(2)}\) and Modular Branching Rules for \(\hat{S}_n\). Crystals of Type \(A_{2 l}^{(2)}\) and Modular Branching Rules for \(\hat{S}_n\), Represent. Theory, 5, 317-403 (2001) ·Zbl 1005.17010
[4]Brundan, J.; Kleshchev, A., Blocks of cyclotomic Hecke algebras and Khovanov-Lauda Algebras, Invent. Math., 178, 451-484 (2009) ·Zbl 1201.20004
[5]Green, J. A., Quantum groups, Hall algebras and quantum shuffles, Finite reductive groups (Luminy 1994). Finite reductive groups (Luminy 1994), Birkhäuser Prog. Math., 141, 273-290 (1997) ·Zbl 0890.17007
[6]Hill, D.; Kujawa, J.; Sussan, J., Affine Hecke-Clifford algebras and type \(Q\) Lie superalgebras, Math. Z., 268, 3-4, 1091-1158 (2011) ·Zbl 1231.20005
[7]Kashiwara, M., On crystal bases of the \(q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 465-516 (1991) ·Zbl 0739.17005
[8]Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 309-347 (2009) ·Zbl 1188.81117
[9]Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc., 363, 2685-2700 (2011) ·Zbl 1214.81113
[10]Kleshchev, A.; Ram, A., Homogeneous representations of Khovanov-Lauda algebras, J. Eur. Math. Soc. (JEMS), 12, 5, 1293-1306 (2010) ·Zbl 1241.20005
[11]Kleshchev, A.; Ram, A., Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann., 349, 4, 943-975 (2011) ·Zbl 1267.20010
[12]Lalonde, P.; Ram, A., Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Amer. Math. Soc., 347, 1821-1830 (1995) ·Zbl 0833.17003
[13]Lauda, A.; Vazirani, M., Crystals from categorified quantum groups, Adv. in Math., 228, 2, 803-861 (2011) ·Zbl 1246.17017
[14]Leclerc, B., Dual canonical bases, quantum shuffles and \(q\)-characters, Math. Z., 246, 4, 691-732 (2004) ·Zbl 1052.17008
[15]Lusztig, G., Introduction to quantum groups, (Progress in Mathematics, vol. 110 (1993), Birkhäuser Boston Inc: Birkhäuser Boston Inc Boston, MA) ·Zbl 0304.58022
[16]Rosso, M., Groupes quantiques et algèbres de battage quantiques, C. R. Acad. Sci. Paris, 320, 145-148 (1995) ·Zbl 0929.17005
[17]Rosso, M., Quantum groups and quantum shuffles, Invent. Math., 133, 399-416 (1998) ·Zbl 0912.17005
[18]M. Rosso, Lyndon bases and the multiplicative formula for \(R\); M. Rosso, Lyndon bases and the multiplicative formula for \(R\)
[19]R. Rouquier, 2-Kac-Moody Algebras. arXiv:0812.5023; R. Rouquier, 2-Kac-Moody Algebras. arXiv:0812.5023 ·Zbl 1247.20002
[20]Zelevinsky, A., Induced representations of reductive \(p\)-adic groups II, Ann. Sci. E.N.S., 13, 165-210 (1980) ·Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp