[1] | Abrams, G.; Tomforde, M., Isomorphism and Morita equivalence of graph algebras, Trans. Amer. Math. Soc., 363, 3733-3767 (2011) ·Zbl 1230.16012 |
[2] | Ara, P.; Brustenga, M., Module theory over Leavitt path algebras and \(K\)-theory, J. Pure Appl. Algebra, 214, 1131-1151 (2010) ·Zbl 1189.16013 |
[3] | Ara, P.; González-Barroso, M. A.; Goodearl, K. R.; Pardo, E., Fractional skew monoid rings, J. Algebra, 278, 1, 104-126 (2004) ·Zbl 1063.16033 |
[4] | Bratteli, O., Inductive limits of finite dimensional \(C^\ast \)-algebras, Trans. Amer. Math. Soc., 171, 195-234 (1979) ·Zbl 0264.46057 |
[5] | Chen, X.-W., The singularity category of an algebra with radical square zero, Doc. Math., 16, 921-936 (2011) ·Zbl 1255.18014 |
[6] | Chen, X.-W., Irreducible representations of Leavitt path algebras ·Zbl 1332.16006 |
[7] | Cohn, P. M., Free Rings and their Relations (1985), Academic Press: Academic Press London ·Zbl 0659.16001 |
[8] | Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press San Diego ·Zbl 0681.55004 |
[9] | Dade, E. C., Group graded rings and modules, Math. Z., 174, 241-262 (1980) ·Zbl 0424.16001 |
[10] | Drinen, D., Viewing AF-algebras as graph algebras, Proc. Amer. Math. Soc., 128, 1991-2000 (2000) ·Zbl 0959.46042 |
[11] | Effros, E. G., (Dimensions and \(C^\ast \)-Algebras. Dimensions and \(C^\ast \)-Algebras, CBMS Regional Conf. Ser. in Math., vol. 46 (1981), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) |
[12] | Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 38, 29-44 (1976) ·Zbl 0323.46063 |
[13] | Gabriel, P., Des Catégories Abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) ·Zbl 0201.35602 |
[14] | Gabriel, P.; de la Peña, J.-A., Quotients of representation-finite algebras, Comm. Algebra, 15, 279-307 (1987) ·Zbl 0609.16013 |
[15] | Geigle, W.; Lenzing, H., Perpendicular categories with applications to representations and sheaves, J. Algebra, 144, 273-343 (1991) ·Zbl 0748.18007 |
[16] | Goodearl, K. R., (Von Neumann Regular Rings. Von Neumann Regular Rings, Monographs and Studies in Mathematics, vol. 4 (1979), Pitman: Pitman London, San Francisco, Melbourne) ·Zbl 0411.16007 |
[17] | Goodearl, K. R., Leavitt path algebras and direct limits, (Rings, Modules and Representations. Rings, Modules and Representations, Contemp. Math., vol. 480 (2009), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 165-187 ·Zbl 1194.16012 |
[18] | Hazrat, R., The graded structure of Leavitt path algebras ·Zbl 1308.16005 |
[19] | Hong, J. H.; Szymański, W., Quantum spheres and projective spaces as graph algebras, Comm. Math. Phys., 232, 157-188 (2002) ·Zbl 1015.81029 |
[20] | Krause, H., (The Spectrum of a Module Category. The Spectrum of a Module Category, Memoirs of the Amer. Math. Soc., No. 707, vol. 149 (2001)) ·Zbl 0981.16007 |
[21] | Lind, D.; Marcus, B., An Introduction to Symbolic Dynamics and Coding (1995), Camb. Univ. Press: Camb. Univ. Press Cambridge ·Zbl 1106.37301 |
[22] | I. Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 2005.; I. Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 2005. ·Zbl 1079.46002 |
[23] | Schofield, A. H., (Representations of Rings Over Skew Fields. Representations of Rings Over Skew Fields, Lond. Math. Soc., Lecture Notes Series, vol. 92 (1985), Cambridge University Press: Cambridge University Press Cambridge, UK) ·Zbl 0571.16001 |
[24] | Smith, S. P., Shift equivalence and a category equivalence involving graded modules over path algebras of quivers |
[25] | Smith, S. P., The non-commutative scheme having a free algebra as a homogeneous coordinate ring |
[26] | S.P. Smith, The space of Penrose tilings and the non-commutative curve with homogeneous coordinate ring \(k \langle x , y \rangle / ( y^2 )\) arXiv:1104.3811; S.P. Smith, The space of Penrose tilings and the non-commutative curve with homogeneous coordinate ring \(k \langle x , y \rangle / ( y^2 )\) arXiv:1104.3811 |
[27] | Stenström, B., (Rings of Quotients. Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, vol. 217 (1975), Springer Verlag: Springer Verlag Berlin) ·Zbl 0296.16001 |
[28] | Tyler, J., Every AF-algebra is Morita equivalent to a graph algebra, Bull. Aust. Math. Soc., 69, 237-240 (2004) ·Zbl 1062.46045 |
[29] | Verevkin, A. B., On a non-commutative analogue of the category of coherent sheaves on a projective scheme, Amer. Math. Soc. Transl. Ser. 2, 151 (1992) ·Zbl 0920.14001 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.