Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Category equivalences involving graded modules over path algebras of quivers.(English)Zbl 1264.16042

Consider a quiver \(Q\) and a field \(k\). Let \(I\) denote the vertex set of \(Q\) and \(Q_1\) the arrow set. The path algebra \(kQ\) can be decomposed in the form \(kQ=KI\oplus kQ_1\oplus kQ_2\oplus\cdots\) and can be seen as the tensor algebra of the \(kI\)-bimodule \(kQ_1\). Next define \(S_n:=\text{End}_{kI}(kQ_n)\). Since \(kQ_{n+1}\cong kQ_1\otimes kQ_n\) (as \(kI\)-modules), we can consider the \(k\)-algebra homomorphism \(\theta_n\colon S_n\to S_{n+1}\) such that for any \(f\in S_n\) and \(x\otimes z\in S_{n+1}\), we have \(\theta(f)(x_1\otimes z)=x_1\otimes f(z)\). Thus, we have a direct system \(S_0\to S_1\to\cdots\) and we can define \(S(Q):=\varinjlim S_n\).
The main result of the paper is the chain of category equivalences: \[\text{QGr}(kQ)\equiv\text{Mod}S(Q)\equiv\text{Gr}L_k(Q^\circ)\equiv\text{Mod}L_k(Q^\circ)_0\equiv\text{QGr}(kQ^{(n)})\] where: (1) \(\text{QGr}(kQ)\) is the quotient category \(\text{QGr}(kQ):=\text{Gr}(kQ)/\text{Fdim}(kQ)\), with \(\text{Gr}(kQ)\) the category of \(\mathbb Z\)-graded left \(kQ\)-modules; \(\text{Fdim}(kQ)\) the localizing (full) subcategory of modules which agree with the sum of their finite-dimensional submodules.
(2) \(Q^\circ\) is the quiver without sinks or sources that is obtained by repeatedly removing all sinks and sources from \(Q\).
(3) \(L_k(Q^\circ)\) is the Leavitt path algebra of \(Q^\circ\) and \(L_k(Q^\circ)_0\) is its zero-homogeneous component.
(4) \(Q^{(n)}\) is the quiver whose incidence matrix is the \(n\)-th power of that of \(Q\).

MSC:

16W50 Graded rings and modules (associative rings and algebras)
16G20 Representations of quivers and partially ordered sets
16D90 Module categories in associative algebras

Cite

References:

[1]Abrams, G.; Tomforde, M., Isomorphism and Morita equivalence of graph algebras, Trans. Amer. Math. Soc., 363, 3733-3767 (2011) ·Zbl 1230.16012
[2]Ara, P.; Brustenga, M., Module theory over Leavitt path algebras and \(K\)-theory, J. Pure Appl. Algebra, 214, 1131-1151 (2010) ·Zbl 1189.16013
[3]Ara, P.; González-Barroso, M. A.; Goodearl, K. R.; Pardo, E., Fractional skew monoid rings, J. Algebra, 278, 1, 104-126 (2004) ·Zbl 1063.16033
[4]Bratteli, O., Inductive limits of finite dimensional \(C^\ast \)-algebras, Trans. Amer. Math. Soc., 171, 195-234 (1979) ·Zbl 0264.46057
[5]Chen, X.-W., The singularity category of an algebra with radical square zero, Doc. Math., 16, 921-936 (2011) ·Zbl 1255.18014
[6]Chen, X.-W., Irreducible representations of Leavitt path algebras ·Zbl 1332.16006
[7]Cohn, P. M., Free Rings and their Relations (1985), Academic Press: Academic Press London ·Zbl 0659.16001
[8]Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press San Diego ·Zbl 0681.55004
[9]Dade, E. C., Group graded rings and modules, Math. Z., 174, 241-262 (1980) ·Zbl 0424.16001
[10]Drinen, D., Viewing AF-algebras as graph algebras, Proc. Amer. Math. Soc., 128, 1991-2000 (2000) ·Zbl 0959.46042
[11]Effros, E. G., (Dimensions and \(C^\ast \)-Algebras. Dimensions and \(C^\ast \)-Algebras, CBMS Regional Conf. Ser. in Math., vol. 46 (1981), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI)
[12]Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 38, 29-44 (1976) ·Zbl 0323.46063
[13]Gabriel, P., Des Catégories Abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) ·Zbl 0201.35602
[14]Gabriel, P.; de la Peña, J.-A., Quotients of representation-finite algebras, Comm. Algebra, 15, 279-307 (1987) ·Zbl 0609.16013
[15]Geigle, W.; Lenzing, H., Perpendicular categories with applications to representations and sheaves, J. Algebra, 144, 273-343 (1991) ·Zbl 0748.18007
[16]Goodearl, K. R., (Von Neumann Regular Rings. Von Neumann Regular Rings, Monographs and Studies in Mathematics, vol. 4 (1979), Pitman: Pitman London, San Francisco, Melbourne) ·Zbl 0411.16007
[17]Goodearl, K. R., Leavitt path algebras and direct limits, (Rings, Modules and Representations. Rings, Modules and Representations, Contemp. Math., vol. 480 (2009), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 165-187 ·Zbl 1194.16012
[18]Hazrat, R., The graded structure of Leavitt path algebras ·Zbl 1308.16005
[19]Hong, J. H.; Szymański, W., Quantum spheres and projective spaces as graph algebras, Comm. Math. Phys., 232, 157-188 (2002) ·Zbl 1015.81029
[20]Krause, H., (The Spectrum of a Module Category. The Spectrum of a Module Category, Memoirs of the Amer. Math. Soc., No. 707, vol. 149 (2001)) ·Zbl 0981.16007
[21]Lind, D.; Marcus, B., An Introduction to Symbolic Dynamics and Coding (1995), Camb. Univ. Press: Camb. Univ. Press Cambridge ·Zbl 1106.37301
[22]I. Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 2005.; I. Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 2005. ·Zbl 1079.46002
[23]Schofield, A. H., (Representations of Rings Over Skew Fields. Representations of Rings Over Skew Fields, Lond. Math. Soc., Lecture Notes Series, vol. 92 (1985), Cambridge University Press: Cambridge University Press Cambridge, UK) ·Zbl 0571.16001
[24]Smith, S. P., Shift equivalence and a category equivalence involving graded modules over path algebras of quivers
[25]Smith, S. P., The non-commutative scheme having a free algebra as a homogeneous coordinate ring
[26]S.P. Smith, The space of Penrose tilings and the non-commutative curve with homogeneous coordinate ring \(k \langle x , y \rangle / ( y^2 )\) arXiv:1104.3811; S.P. Smith, The space of Penrose tilings and the non-commutative curve with homogeneous coordinate ring \(k \langle x , y \rangle / ( y^2 )\) arXiv:1104.3811
[27]Stenström, B., (Rings of Quotients. Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, vol. 217 (1975), Springer Verlag: Springer Verlag Berlin) ·Zbl 0296.16001
[28]Tyler, J., Every AF-algebra is Morita equivalent to a graph algebra, Bull. Aust. Math. Soc., 69, 237-240 (2004) ·Zbl 1062.46045
[29]Verevkin, A. B., On a non-commutative analogue of the category of coherent sheaves on a projective scheme, Amer. Math. Soc. Transl. Ser. 2, 151 (1992) ·Zbl 0920.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp