[1] | Abrams, G.; Aranda Pino, G., The Leavitt path algebra of a graph, J. Algebra, 293, 319-334 (2005) ·Zbl 1119.16011 |
[2] | Abrams, G.; Aranda Pino, G., Purely infinite simple Leavitt path algebras, J. Pure Appl. Algebra, 207, 553-563 (2006) ·Zbl 1137.16028 |
[3] | Abrams, G.; Aranda Pino, G.; Siles Molina, M., Finite dimensional Leavitt path algebras, J. Pure Appl. Algebra, 209, 3, 753-762 (2007) ·Zbl 1128.16008 |
[4] | Abrams, G.; Ánh, P. N.; Louly, A.; Pardo, E., The classification question for Leavitt path algebras, J. Algebra, 320, 1983-2026 (2008) ·Zbl 1205.16013 |
[5] | G. Abrams, C. Smith, Explicit isomorphisms between purely infinite simple Leavitt path algebras, in preparation.; G. Abrams, C. Smith, Explicit isomorphisms between purely infinite simple Leavitt path algebras, in preparation. ·Zbl 1221.16015 |
[6] | Ara, P.; Goodearl, K.; Pardo, E., \(K_0\) of purely infinite simple regular rings, K-Theory, 26, 69-100 (2002) ·Zbl 1012.16013 |
[7] | Ara, P.; Moreno, M. A.; Pardo, E., Nonstable K-Theory for graph algebras, Algebr. Represent. Theory, 10, 157-178 (2007) ·Zbl 1123.16006 |
[8] | Ara, P.; Pardo, E., Stable rank of Leavitt path algebras, Proc. Amer. Math. Soc., 136, 7, 2375-2386 (2008) ·Zbl 1146.16004 |
[9] | Aranda Pino, G.; Pardo, E.; Siles Molina, M., Exchange Leavitt path algebras and stable rank, J. Algebra, 305, 912-936 (2006) ·Zbl 1108.46038 |
[10] | Bates, T.; Pask, D., Flow equivalence of graph algebras, Ergodic Theory Dynam. Systems, 24, 367-382 (2004) ·Zbl 1076.46046 |
[11] | Cuntz, J.; Krieger, W., A class of C*-algebras and topological Markov chains, Invent. Math., 56, 251-268 (1980) ·Zbl 0434.46045 |
[12] | D. Drinen, Flow equivalence and graph groupoid isomorphism, Dartmouth College, 2001, preprint.; D. Drinen, Flow equivalence and graph groupoid isomorphism, Dartmouth College, 2001, preprint. |
[13] | Franks, J., Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems, 4, 53-66 (1984) ·Zbl 0555.54026 |
[14] | García, J. L.; Simón, J. J., Morita equivalence for idempotent rings, J. Pure Appl. Algebra, 76, 1, 39-56 (1991) ·Zbl 0747.16007 |
[15] | E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov theory, preprint.; E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov theory, preprint. ·Zbl 0897.46057 |
[16] | Huang, D., Flow equivalence of reducible shifts of finite type, Ergodic Theory Dynam. Systems, 14, 695-720 (1994) ·Zbl 0819.46051 |
[17] | Huang, D., Automorphisms of Bowen-Franks groups of shifts of finite type, Ergodic Theory Dynam. Systems, 21, 1113-1137 (2001) ·Zbl 1055.37018 |
[18] | Lind, D.; Marcus, B., An Introduction to Symbolic Dynamics and Coding (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, reprinted 1999, with corrections ·Zbl 1106.37301 |
[19] | Parry, W.; Sullivan, D., A topological invariant for flows on one-dimensional spaces, Topology, 14, 297-299 (1975) ·Zbl 0314.54045 |
[20] | Phillips, N. C., A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math., 5, 49-114 (2000) ·Zbl 0943.46037 |
[21] | Raeburn, I., Graph Algebras, CBMS Reg. Conf. Ser. Math., vol. 103 (2005), American Mathematical Society: American Mathematical Society Providence ·Zbl 1079.46002 |
[22] | Rørdam, M., Classication of Cuntz-Krieger algebras, K-Theory, 9, 31-58 (1995) ·Zbl 0826.46064 |
[23] | Tomforde, M., Structure of graph C*-algebras and generalizations, (Aranda Pino, G.; Perera, F.; Siles Molina, M., Graph Algebras: Bridging the Gap Between Analysis and Algebra (2007), Universidad de Málaga Press) ·Zbl 1024.46023 |
[24] | Williams, R. F., Classification of subshifts of finite type, Ann. of Math., 98, 2, 120-153 (1973) ·Zbl 0282.58008 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.