Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Higman ideal, stable Hochschild homology and Auslander-Reiten conjecture.(English)Zbl 1261.16010

Let \(k\) be an algebraically closed field, and \(A\), \(B\) be finite dimensional \(k\)-algebras. The algebras \(A\) and \(B\) are said to be stably equivalent if there is an equivalence of their associated stable module categories. The Auslander-Reiten conjecture asserts that if \(A\) and \(B\) are stably equivalent, then \(A\) and \(B\) should have the same number of isomorphism classes of non-projective simple modules. The focus of this paper is on the special (but oft occurring) case of a stable equivalence ofMorita type.
Let \(A^e:=A\otimes_kA^{op}\) denote the enveloping algebra of \(A\). The center \(Z(A)\) of \(A\) can be identified with the \(A^e\)-endomorphisms of \(A\), and the projective center of \(A\) is the subset of \(Z(A)\) consisting of those endomorphisms that factor though a projective \(A^e\)-module. From an alternate perspective, the projective center of \(A\) can be identified with the Higman ideal of \(A\). The quotient of the center by the projective center is called the stable center of \(A\). The authors introduce an analogous notion of the 0-degree stable Hochschild homology group \(HH_0^{\text{st}}(A)\) as a subset of the ordinary Hochschild homology \(HH_0(A)\). It is shown that if \(A\) and \(B\) are stably equivalent of Morita type, then \(HH_0^{\text{st}}(A)\cong HH_0^{\text{st}}(B)\). Further, it is shown that the dimension of \(HH_0(A)\) is the dimension of \(HH_0^{\text{st}}(A)\) plus the \(p\)-rank of the Cartan matrix of \(A\) where \(p\) is the characteristic of \(k\).
The main result is that if \(A\) and \(B\) are stably equivalent of Morita type, then \(A\) and \(B\) having the same number of isomorphism classes of simple modules is equivalent to \(HH_0(A)\) and \(HH_0(B)\) having the same dimension. If \(A\) and \(B\) have no semisimple direct summands, then this is further equivalent to \(A\) and \(B\) having the same number of non-projective simple modules. If one supposes that \(A\) or \(B\) is symmetric, then the condition that \(A\) and \(B\) have the same number of isomorphism classes of simple modules is further equivalent to the centers (or projective centers) of \(A\) and \(B\) having the same dimension.
The above results hold over fields of arbitrary characteristic. For \(p>0\), the authors use the existence of a power-\(p\) map on \(HH_0(A)\) to obtain an alternate proof of the results. They also provide an application to stable Külshammer and Reynolds ideals.

MSC:

16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
16G10 Representations of associative Artinian rings
16D90 Module categories in associative algebras
18E30 Derived categories, triangulated categories (MSC2010)

Cite

References:

[1]Auslander M., Reiten I., Smalø S.O.: Representation Theory of Artin Algebras. Cambridge University Press, Cambridge (1995) ·Zbl 0834.16001
[2]Bessenrodt Ch., Holm Th., Zimmermann A.: Generalized Reynolds ideals for non-symmetric algebras. J. Algebra 312, 985–994 (2007) ·Zbl 1119.16001 ·doi:10.1016/j.jalgebra.2007.02.028
[3]Bouc, S.: Bimodules, trace généralisée, et transferts en homologie de Hochschild. http://www.lamfa.u-picardie.fr/bouc/ (1997, preprint)
[4]Broué M.: Equivalences of blocks of group algebras. In: Dlab, V., Scott, L.L. (eds) Finite Dimensional Algebras and Related Topics, pp. 1–26. Kluwer, Dordrecht (1994) ·Zbl 0827.20007
[5]Broué M.: Higman criterion revisited. Mich. J. Math. 58, 125–179 (2009) ·Zbl 1201.16014 ·doi:10.1307/mmj/1242071686
[6]Curtis C.W., Reiner I.: Methods of Representation Theory I. Wiley, New York (1981) ·Zbl 0469.20001
[7]Erdmann, K.: Blocks of tame representation type and related algebras. Springer Lecture Notes in Mathematics, vol. 1428 (1980) ·Zbl 0696.20001
[8]Eu C.H., Schedler T.: Calabi-Yau Frobenius algebras. J. Algebra 321, 774–815 (2009) ·Zbl 1230.16009 ·doi:10.1016/j.jalgebra.2008.11.003
[9]Héthelyi L., Horváth E., Külshammer B., Murray J.: Central ideals and cartan invariants of symmetric algebras. J. Algebra 293, 243–260 (2005) ·Zbl 1088.16025 ·doi:10.1016/j.jalgebra.2005.01.052
[10]Higman D.G.: On orders in separable algebras. Can. J. Math. 7, 509–515 (1955) ·Zbl 0065.26002 ·doi:10.4153/CJM-1955-053-1
[11]Holm Th., Zimmermann A.: Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type. J. Algebra 320, 3425–3437 (2008) ·Zbl 1160.16009 ·doi:10.1016/j.jalgebra.2008.07.026
[12]Keller B., Vossieck D.: Sous les catégories dérivées. C. R. Acad. Sci. Paris 305, 225–228 (1987) ·Zbl 0628.18003
[13]Keller B.: Invariance and localization for cyclic homology of DG algebras. J. Pure Appl. Algebra 123, 223–273 (1998) ·Zbl 0890.18007 ·doi:10.1016/S0022-4049(96)00085-0
[14]König S., Liu Y.M.: Gluing of idempotents, radical embeddings and two classes of stable equivalences. J. Algebra 319, 5144–5164 (2008) ·Zbl 1152.16011 ·doi:10.1016/j.jalgebra.2007.12.012
[15]König, S., Liu. Y.M., Zhou. G.D.: Transfer maps in Hochschild (co)homology and applications to stable and derived invariants and to the Auslander-Reiten conjecture. Trans. Am. Math. Soc (to appear) ·Zbl 1273.16012
[16]König S., Zimmermann A.: Derived Equivalences for Group Rings. Lecture Notes in Mathematics, vol. 1685. Springer, Berlin (1998) ·Zbl 0898.16002
[17]Külshammer B.: Group-theoretical descriptions of ring theoretical invariants of group algebras. Prog. Math. 95, 425–441 (1991) ·Zbl 0747.20002
[18]Lenzing H.: Nilpotente Elemente in Ringen von endlicher globaler Dimension. Math. Zeit. 108, 313–324 (1969) ·Zbl 0172.04903 ·doi:10.1007/BF01112536
[19]Linckelmann M.: Stable equivalences of Morita type for selfinjective algebras and p-groups. Math. Zeit. 223, 87–100 (1996) ·Zbl 0866.16004 ·doi:10.1007/BF02621590
[20]Liu Y.M.: On stable equivalences induced by exact functors. Proc. Am. Math. Soc. 134, 1605–1613 (2006) ·Zbl 1122.16012 ·doi:10.1090/S0002-9939-05-08157-8
[21]Liu Y.M.: Summands of stable equivalences of Morita type. Commun. Algebra 36(10), 3778–3782 (2008) ·Zbl 1162.16008 ·doi:10.1080/00927870802160560
[22]Liu Y.M., Xi C.C.: Constructions of stable equivalences of Morita type for finite dimensional algebras II. Math. Zeit. 251, 21–39 (2005) ·Zbl 1106.16012 ·doi:10.1007/s00209-005-0786-9
[23]Liu Y.M., Xi C.C.: Constructions of stable equivalences of Morita type for finite dimensional algebras I. Trans. Am. Math. Soc. 358, 2537–2560 (2006) ·Zbl 1100.16012 ·doi:10.1090/S0002-9947-05-03775-X
[24]Liu Y.M., Xi C.C.: Constructions of stable equivalences of Morita type for finite dimensional algebras III. J. Lond. Math. Soc. 76(3), 567–585 (2007) ·Zbl 1181.16012 ·doi:10.1112/jlms/jdm065
[25]Martinez-Villa R.: Algebras stably equivalent to l-hereditary algeras. In: Dlab, V., Gabriel, P. (eds) Representation Theory II. Lecture Notes in Mathematics, vol. 832, pp. 396–431. Springer, Berlin (1980)
[26]Martinez-Villa R.: The stable equivalence for algebras of finite representation type. Commun. Algebra 13(5), 991–1018 (1985) ·Zbl 0565.16016 ·doi:10.1080/00927878508823203
[27]Martinez-Villa R.: Properties that are left invariant under stable equivalence. Commun. Algebra 18(12), 4141–4169 (1990) ·Zbl 0724.16002
[28]Martinez-Villa R.: The stable group of a selfinjective Nakayama algebra. Commun. Algebra 19(2), 509–517 (1991) ·Zbl 0731.16005 ·doi:10.1080/00927879108824151
[29]Ohtake K., Fukushima H.: A remark on Higman’s result about separable algebras. Tsukuba J. Math. 10, 35–46 (1986) ·Zbl 0603.16005
[30]Pogorzały Z.: Algebras stably equivalent to self-injective special biserial algebras. Commun. Algebra 22(4), 1127–1160 (1994) ·Zbl 0805.16008 ·doi:10.1080/00927879408824898
[31]Pogorzały Z.: Invariance of Hochschild cohomology algebras under stable equivalences of Morita type. J. Math. Soc. Jpn. 53(4), 913–918 (2001) ·Zbl 1043.16008 ·doi:10.2969/jmsj/05340913
[32]Rickard J.: Derived categories and stable equivalence. J. Pure Appl. Algebra 61(3), 303–317 (1989) ·Zbl 0685.16016 ·doi:10.1016/0022-4049(89)90081-9
[33]Rickard J.: Derived equivalences as derived functors. J. Lond. Math. Soc. 43, 37–48 (1991) ·Zbl 0683.16030 ·doi:10.1112/jlms/s2-43.1.37
[34]Riedtmann Ch.: Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv. 55(2), 199–224 (1980) ·Zbl 0444.16018 ·doi:10.1007/BF02566682
[35]Roggenkamp K.W., Huber-Dyson V.: Lattices over Orders. Lecture Notes in Mathematics, vol. 115. Springer, Berlin (1970) ·Zbl 0205.33501
[36]Rouquier, R.: Derived equivalences and finite dimensional algebras. Proceedings of the International Congress of Mathematicians (Madrid, 2006), vol. II, pp. 191–221. EMS Publishing House, Zurich (2006) ·Zbl 1108.20006
[37]Tang A.P.: A note on the stable equivalence conjecture. Commun. Algebra 24(9), 2793–2809 (1996) ·Zbl 0867.16007 ·doi:10.1080/00927879608825713
[38]Tachikawa H., Wakamatsu T.: Cartan matrices and Grothendieck groups of stable categories. J. Algebra 144(2), 390–398 (1991) ·Zbl 0753.16004 ·doi:10.1016/0021-8693(91)90111-K
[39]Xi C.C.: Stable equivalences of adjoint type. Forum Math. 20, 81–97 (2008) ·Zbl 1184.16014 ·doi:10.1515/FORUM.2008.004
[40]Zhou, G.D., Zimmermann, A.: Classifying tame blocks and related algebras up to stable equivalences of Morita type (2010, preprint) ·Zbl 1257.16014
[41]Zhou, G.D., Zimmermann, A.: Auslander-Reiten conjecture for symmetric algebras of polynomial growth (2010, preprint) ·Zbl 1276.16006
[42]Zimmermann A.: Invariance of generalized Reynolds ideals under derived equivalences. Math. Proc. R. Ir. Acad. 107(1), 1–9 (2007) ·Zbl 1131.16003 ·doi:10.3318/PRIA.2007.107.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp