76M25 | Other numerical methods (fluid mechanics) (MSC2010) |
76S05 | Flows in porous media; filtration; seepage |
76M12 | Finite volume methods applied to problems in fluid mechanics |
[1] | Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2(3), 421–439 (2004) ·Zbl 1181.76125 ·doi:10.1137/030600655 |
[2] | Arbogast, T.: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase darcy flow. Comput. Geosci. 6, 453–481 (2002) ·Zbl 1094.76532 ·doi:10.1023/A:1021295215383 |
[3] | Arbogast, T., Bryant, S.L.: A two-scale numerical subgrid technique for waterflood simulations. SPE J. 7, 446–457 (2002) |
[4] | Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier, Amsterdam (1979) |
[5] | Chen, Y., Durlofsky, L.J., Gerritsen, M., Wen, X.H.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003) ·doi:10.1016/S0309-1708(03)00101-5 |
[6] | Chen, Z., Hou, T.Y.: A mixed finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 72, 541–576 (2002) ·Zbl 1017.65088 ·doi:10.1090/S0025-5718-02-01441-2 |
[7] | Chen, Z., Yue, X.: Numerical homogenization of well singularities in the flow transport through heterogeneous porous media. Multiscale Model. Simul. 1(2), 260–303 (2003) ·Zbl 1107.76073 ·doi:10.1137/S1540345902413322 |
[8] | Christie, M.A., Blunt, M.J.: Tenth SPE Comparative solution project: a comparison of upscaling techniques. SPE Reserv. Eng. 4(4), 308–317 (2001) |
[9] | Craft, B., Hawkins, M.F.: Petroleum Reservoir Engineering. Prentice-Hall, Englewood Cliffs (1959) |
[10] | Dagan, G.: Flow and Transport in Porous Formations. Springer, New York (1989) ·Zbl 0673.76026 |
[11] | Deutsch, C.V., Journel, A.G.: GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, New York (1998) |
[12] | Efendiev, Y., Wu, X.: Multiscale finite element methods for the problems with highly oscillatory coefficients. Numer. Math. 90, 459–486 (2001) ·Zbl 0997.65129 ·doi:10.1007/s002110100274 |
[13] | Gautier, Y., Blunt, M.J., Christie, M.A.: Nested gridding and streamline-based simulation for fast reservoir performance predicition. Comput. Geosci. 4, 295–320 (1999) ·Zbl 0968.76059 ·doi:10.1023/A:1011535210857 |
[14] | Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comp. Phys. 134, 169–189 (1997) ·Zbl 0880.73065 ·doi:10.1006/jcph.1997.5682 |
[15] | Jenny, P., Lee, S.H., Tchelepi, H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003) ·Zbl 1047.76538 ·doi:10.1016/S0021-9991(03)00075-5 |
[16] | Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive multiscale finite volume method for multi-phase flow and transport. Multiscale Model. Simul. 3, 50–64 (2004) ·Zbl 1160.76372 ·doi:10.1137/030600795 |
[17] | Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J. Comput. Phys. 217, 627–641 (2006) ·Zbl 1160.76373 ·doi:10.1016/j.jcp.2006.01.028 |
[18] | Juanes, R., Dub, F.-X.: A locally-conservative variational multiscale method for the simulation of porous media flow with multiscale source terms. Comput. Geosci. (2008) doi: 10.1007/s10596-007-9070-x ·Zbl 1259.76067 |
[19] | Lee, S.H., Tchelepi, H.A., Jenny, P., DeChant, L.J.: Implementation of a flux-continuous finite difference method for stratigraphic, hexahedron grids. SPE J. 7, 267–277 (2002) |
[20] | Lunati, I., Jenny, P.: Multi-scale finite-volume method for multi-phase flow with gravity. Comput. Geosci. (2008) doi: 10.1007/s10596-007-9071-9 ·Zbl 1259.76051 |
[21] | Lunati, I., Jenny, P.: Multi-scale finite-volume method for compressible multi-phase flow in porous media. J. Comput. Phys. 216, 616–636 (2006) ·Zbl 1220.76049 ·doi:10.1016/j.jcp.2006.01.001 |
[22] | Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, Amsterdam (1977) |
[23] | Tchelepi, H.A., Jenny, P., Lee, S.H., Wolfsteiner, C.: Adaptive multiscale finite volume framework for reservoir simulation. SPE J. 12, 188–195 (2007) |
[24] | Watts, J.W.: A compositional formulation of the pressure and saturation equations. In: Proceedings of 7th SPE Symposium on Reservoir Simulation: SPE 12244, pp. 113–122, San Francisco, CA, 15–18 November 1983 |
[25] | Wolfsteiner, C., Lee, S.H., Tchelepi, H.A.: Modeling of wells in the multiscale finite volume method for subsurface flow simultion. Multiscale Model. Simul. 5(3), 900–917 (2006) ·Zbl 1205.76175 ·doi:10.1137/050640771 |