37D30 | Partially hyperbolic systems and dominated splittings |
37D25 | Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.) |
37D35 | Thermodynamic formalism, variational principles, equilibrium states for dynamical systems |
[1] | Rufus Bowen, Markov partitions for Axiom \? diffeomorphisms, Amer. J. Math. 92 (1970), 725 – 747. ·Zbl 0208.25901 ·doi:10.2307/2373370 |
[2] | Michael Brin, On dynamical coherence, Ergodic Theory Dynam. Systems 23 (2003), no. 2, 395 – 401. ·Zbl 1140.37317 ·doi:10.1017/S0143385702001499 |
[3] | Michael Brin, Dmitri Burago, and Sergey Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn. 3 (2009), no. 1, 1 – 11. ·Zbl 1190.37026 ·doi:10.3934/jmd.2009.3.1 |
[4] | Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, and Raúl Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center, Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 75 – 88. ·Zbl 1154.37328 ·doi:10.3934/dcds.2008.22.75 |
[5] | J. Buzzi, T. Fisher, M. Sambarino, C. Vasquez, Maximal Entropy Measures for Certain Partially Hyperbolic, Derived from Anosov Systems, to appear in Ergodic Theory Dynam. Systems. ·Zbl 1257.37023 |
[6] | William Cowieson and Lai-Sang Young, SRB measures as zero-noise limits, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1115 – 1138. ·Zbl 1098.37020 ·doi:10.1017/S0143385704000604 |
[7] | L. J. Díaz, T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst. 29 (2011), no. 4, 1419-1441. ·Zbl 1220.37016 |
[8] | John Franks, Anosov diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 61 – 93. ·Zbl 0207.54304 |
[9] | Andrew Scott Hammerlindl, Leaf conjugacies on the torus, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.) – University of Toronto (Canada). ·Zbl 1390.37051 |
[10] | Yongxia Hua, Radu Saghin, and Zhihong Xia, Topological entropy and partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 843 – 862. ·Zbl 1143.37023 ·doi:10.1017/S0143385707000405 |
[11] | Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. ·Zbl 0878.58020 |
[12] | François Ledrappier and Peter Walters, A relativised variational principle for continuous transformations, J. London Math. Soc. (2) 16 (1977), no. 3, 568 – 576. ·Zbl 0388.28020 ·doi:10.1112/jlms/s2-16.3.568 |
[13] | Ricardo Mañé, Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383 – 396. ·Zbl 0405.58035 ·doi:10.1016/0040-9383(78)90005-8 |
[14] | Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. ·Zbl 1140.37010 |
[15] | M. Misiurewicz, Diffeomorphism without any measure with maximal entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 903 – 910 (English, with Russian summary). ·Zbl 0272.28013 |
[16] | Sheldon E. Newhouse, Continuity properties of entropy, Ann. of Math. (2) 129 (1989), no. 2, 215 – 235. ·Zbl 0676.58039 ·doi:10.2307/1971492 |
[17] | Sheldon E. Newhouse and Lai-Sang Young, Dynamics of certain skew products, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 611 – 629. ·doi:10.1007/BFb0061436 |
[18] | F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi, R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves, to appear in Ergodic Theory Dynam. Systems. ·Zbl 1257.37024 |
[19] | F. Rodriguez Hertz, M. A. Rodriguez Hertz, R. Ures, A non-dynamical coherent example in \( \mathbb{T}^3\), preprint. |
[20] | M. Shub, Topologically transitive diffeomorphisms on \( \mathbb{T}^4\). Lect. Notes in Math. 206 (1971), 39. |
[21] | B. Weiss, Intrinsically ergodic systems, Bull. Amer. Math. Soc. 76 (1970), 1266 – 1269. ·Zbl 0218.28011 |