Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Classifying Serre subcategories via atom spectrum.(English)Zbl 1255.18011

The paper extends Herzog’s one-to-one correspondence between localizing subcategories of a locally coherent Grothendieck category and the open sets of the Ziegler spectrum. A first instance of such a correspondence was found in Gabriel’s thesis, and similar topics were studied intensively inH. Krause’s habilitation thesis.
An object of an abelian category \(\mathcal A\) is called monoform if it is a rational extension of every non-zero subobject. Monoform objects are “strongly uniform” in the sense ofH. Storrer. The author introduces the atom spectrum of \(\mathcal A\), points of which are the classes of monoform objects with a common non-zero subobject. With a suitable topology, the atom spectrum generalizes the Ziegler spectrum of a locally noetherian Grothendieck category.

MSC:

18E10 Abelian categories, Grothendieck categories

Cite

References:

[1]Benson, D.; Iyengar, S. B.; Krause, H., Stratifying modular representations of finite groups, Ann. of Math. (2), 174, 3, 1643-1684 (2011) ·Zbl 1261.20057
[2]Dlab, V., Rank Theory of modules, Fund. Math., 64, 313-324 (1969) ·Zbl 0192.38001
[3]Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) ·Zbl 0201.35602
[4]Garkusha, G.; Prest, M., Classifying Serre subcategories of finitely presented modules, Proc. Amer. Math. Soc., 136, 3, 761-770 (2008) ·Zbl 1133.13007
[5]Herzog, I., The Ziegler spectrum of a locally coherent Grothendieck category, Proc. Lond. Math. Soc. (3), 74, 3, 503-558 (1997) ·Zbl 0909.16004
[6]Krause, H., The spectrum of a locally coherent category, J. Pure Appl. Algebra, 114, 3, 259-271 (1997) ·Zbl 0868.18003
[7]Lambek, J.; Michler, G., The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra, 25, 364-389 (1973) ·Zbl 0259.16018
[8]Matlis, E., Injective modules over Noetherian rings, Pacific J. Math., 8, 511-528 (1958) ·Zbl 0084.26601
[9]Reyes, M. L., A one-sided prime ideal principle for noncommutative rings, J. Algebra Appl., 9, 6, 877-919 (2010) ·Zbl 1219.16003
[10]Storrer, H. H., On Goldman’s primary decomposition, (Lectures on Rings and Modules (Tulane Univ. Ring and Operator Theory Year, 1970-1971, Vol. I). Lectures on Rings and Modules (Tulane Univ. Ring and Operator Theory Year, 1970-1971, Vol. I), Lecture Notes in Math, vol. 246 (1972), Springer: Springer Berlin), 617-661 ·Zbl 0227.16024
[11]Takahashi, R., Classifying subcategories of modules over a commutative Noetherian ring, J. Lond. Math. Soc. (2), 78, 3, 767-782 (2008) ·Zbl 1155.13008
[12]Ziegler, M., Model theory of modules, Ann. Pure Appl. Logic, 26, 2, 149-213 (1984) ·Zbl 0593.16019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp