[1] | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Abramowitz, M. and Stegun, I. A., Eds., New York: Dover Publications, 1992. |
[2] | H. Bahouri and I. Gallagher, ”The heat kernel and frequency localized functions on the Heisenberg group,” in Advances in Phase Space Analysis of Partial Differential Equations, Boston, MA: Birkhäuser, 2009, vol. 78, pp. 17-35. ·Zbl 1202.43005 ·doi:10.1007/978-0-8176-4861-9_2 |
[3] | H. Bahouri, P. Gérard, and C. Xu, ”Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg,” J. Anal. Math., vol. 82, pp. 93-118, 2000. ·Zbl 0965.22010 ·doi:10.1007/BF02791223 |
[4] | W. Beckner, ”Sobolev inequalities, the Poisson semigroup, and analysis on the sphere \(S^n\),” Proc. Nat. Acad. Sci. U.S.A., vol. 89, iss. 11, pp. 4816-4819, 1992. ·Zbl 0766.46012 ·doi:10.1073/pnas.89.11.4816 |
[5] | W. Beckner, ”Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality,” Ann. of Math., vol. 138, iss. 1, pp. 213-242, 1993. ·Zbl 0826.58042 ·doi:10.2307/2946638 |
[6] | M. Bidaut-Véron and L. Véron, ”Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations,” Invent. Math., vol. 106, iss. 3, pp. 489-539, 1991. ·Zbl 0755.35036 ·doi:10.1007/BF01243922 |
[7] | T. P. Branson, L. Fontana, and C. Morpurgo, Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere, 2007. ·Zbl 1334.35366 ·doi:10.4007/annals.2013.177.1.1 |
[8] | H. Brézis and E. Lieb, ”A relation between pointwise convergence of functions and convergence of functionals,” Proc. Amer. Math. Soc., vol. 88, iss. 3, pp. 486-490, 1983. ·Zbl 0526.46037 ·doi:10.2307/2044999 |
[9] | L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Basel: Birkhäuser, 2007, vol. 259. ·Zbl 1138.53003 |
[10] | E. A. Carlen and M. Loss, ”Extremals of functionals with competing symmetries,” J. Funct. Anal., vol. 88, iss. 2, pp. 437-456, 1990. ·Zbl 0705.46016 ·doi:10.1016/0022-1236(90)90114-Z |
[11] | E. A. Carlen and M. Loss, ”Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \(S^n\),” Geom. Funct. Anal., vol. 2, iss. 1, pp. 90-104, 1992. ·Zbl 0754.47041 ·doi:10.1007/BF01895706 |
[12] | S. A. Chang and P. C. Yang, ”Prescribing Gaussian curvature on \(S^2\),” Acta Math., vol. 159, iss. 3-4, pp. 215-259, 1987. ·Zbl 0636.53053 ·doi:10.1007/BF02392560 |
[13] | W. S. Cohn and G. Lu, ”Best constants for Moser-Trudinger inequalities on the Heisenberg group,” Indiana Univ. Math. J., vol. 50, iss. 4, pp. 1567-1591, 2001. ·Zbl 1019.43009 ·doi:10.1512/iumj.2001.50.2138 |
[14] | W. S. Cohn and G. Lu, ”Sharp constants for Moser-Trudinger inequalities on spheres in complex space \(\mathbb C^n\),” Comm. Pure Appl. Math., vol. 57, iss. 11, pp. 1458-1493, 2004. ·Zbl 1063.35060 ·doi:10.1002/cpa.20043 |
[15] | M. Cowling, ”Unitary and uniformly bounded representations of some simple Lie groups,” in Harmonic Analysis and Group Representations, Naples: Liguori, 1982, pp. 49-128. ·Zbl 1235.22001 ·doi:10.1007/978-3-642-11117-4 |
[16] | G. B. Folland, ”Spherical harmonic expansion of the Poisson-Szeg\Ho kernel for the ball,” Proc. Amer. Math. Soc., vol. 47, pp. 401-408, 1975. ·Zbl 0296.35010 ·doi:10.2307/2039754 |
[17] | G. B. Folland and E. M. Stein, ”Estimates for the \(\bar \partial _b\) complex and analysis on the Heisenberg group,” Comm. Pure Appl. Math., vol. 27, pp. 429-522, 1974. ·Zbl 0293.35012 ·doi:10.1002/cpa.3160270403 |
[18] | R. L. Frank and E. H. Lieb, ”Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality,” Calc. Var. Partial Differential Equations, vol. 39, iss. 1-2, pp. 85-99, 2010. ·Zbl 1204.39024 ·doi:10.1007/s00526-009-0302-x |
[19] | R. L. Frank and E. H. Lieb, ”A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality,” in Spectral Theory, Function Spaces and Inequalities, et al. Brown, B. M., Ed., Basel: Birkhäuser, 2012, vol. 219, pp. 55-67. ·Zbl 1297.39023 ·doi:10.1007/978-3-0348-0263-5_4 |
[20] | N. Garofalo and D. Vassilev, ”Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type,” Duke Math. J., vol. 106, iss. 3, pp. 411-448, 2001. ·Zbl 1012.35014 ·doi:10.1215/S0012-7094-01-10631-5 |
[21] | B. Gaveau, ”Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents,” Acta Math., vol. 139, iss. 1-2, pp. 95-153, 1977. ·Zbl 0366.22010 ·doi:10.1007/BF02392235 |
[22] | P. Gérard, ”Description du défaut de compacité de l’injection de Sobolev,” ESAIM Control Optim. Calc. Var., vol. 3, pp. 213-233, 1998. ·Zbl 0907.46027 ·doi:10.1051/cocv:1998107 |
[23] | G. H. Hardy and J. E. Littlewood, ”Some properties of fractional integrals. I,” Math. Z., vol. 27, iss. 1, pp. 565-606, 1928. ·JFM 54.0275.05 ·doi:10.1007/BF01171116 |
[24] | G. H. Hardy and J. E. Littlewood, ”Notes on the theory of series (XII): On certain inequalities connected with the calculus of variations,” J. London Math. Soc., vol. 5, pp. 34-39, 1930. ·JFM 56.0434.01 ·doi:10.1112/jlms/s1-5.1.34 |
[25] | J. Hersch, ”Quatre propriétés isopérimétriques de membranes sphériques homogènes,” C. R. Acad. Sci. Paris Sér. A-B, vol. 270, p. a1645-a1648, 1970. ·Zbl 0224.73083 |
[26] | A. Hulanicki, ”The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group,” Studia Math., vol. 56, iss. 2, pp. 165-173, 1976. ·Zbl 0336.22007 |
[27] | D. Jerison and J. M. Lee, ”The Yamabe problem on CR manifolds,” J. Differential Geom., vol. 25, iss. 2, pp. 167-197, 1987. ·Zbl 0661.32026 |
[28] | D. Jerison and J. M. Lee, ”Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem,” J. Amer. Math. Soc., vol. 1, iss. 1, pp. 1-13, 1988. ·Zbl 0634.32016 ·doi:10.2307/1990964 |
[29] | K. D. Johnson and N. R. Wallach, ”Composition series and intertwining operators for the spherical principal series. I,” Trans. Amer. Math. Soc., vol. 229, pp. 137-173, 1977. ·Zbl 0349.43010 ·doi:10.2307/1998503 |
[30] | R. Killip and M. Visan, Nonlinear Schrödinger equations at critical regularity. ·Zbl 1208.35138 |
[31] | E. H. Lieb, ”Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,” Ann. of Math., vol. 118, iss. 2, pp. 349-374, 1983. ·Zbl 0527.42011 ·doi:10.2307/2007032 |
[32] | E. H. Lieb and M. Loss, Analysis, Second ed., Providence, RI: Amer. Math. Soc., 2001, vol. 14. ·Zbl 0966.26002 |
[33] | P. Gerard, Y. Meyer, and F. Oru, ”Inégalités de Sobolev précisées,” in Séminaire sur les Équations aux Dérivées Partielles, 1996-1997, Palaiseau: École Polytech., 1997, p. x. ·Zbl 1066.46501 |
[34] | D. Müller, F. Ricci, and E. M. Stein, ”Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I,” Invent. Math., vol. 119, iss. 2, pp. 199-233, 1995. ·Zbl 0857.43012 ·doi:10.1007/BF01245180 |
[35] | E. Onofri, ”On the positivity of the effective action in a theory of random surfaces,” Comm. Math. Phys., vol. 86, iss. 3, pp. 321-326, 1982. ·Zbl 0506.47031 ·doi:10.1007/BF01212171 |
[36] | B. Osgood, R. Phillips, and P. Sarnak, ”Extremals of determinants of Laplacians,” J. Funct. Anal., vol. 80, iss. 1, pp. 148-211, 1988. ·Zbl 0653.53022 ·doi:10.1016/0022-1236(88)90070-5 |
[37] | S. L. Sobolev, ”On a theorem of functional analysis,” Mat. Sb. (N.S.), vol. 4, pp. 471-479, 1938. ·Zbl 0131.11501 |
[38] | E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton, NJ: Princeton Univ. Press, 1993. ·Zbl 0821.42001 |
[39] | E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton, N.J.: Princeton Univ. Press, 1971, vol. 32. ·Zbl 0232.42007 |
[40] | J. N. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions. Vol. 2, Class I representations, special functions, and integral transforms,, Dordrecht: Kluwer Academic Publishers Group, 1993, vol. 74. ·Zbl 0809.22001 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.