Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Hall algebras of curves, commuting varieties and Langlands duality.(English)Zbl 1252.14012

The authors construct an isomorphism between the (universal) spherical Hall algebra of a smooth projective curve of genus \(g\) and a convolution algebra in the (equivariant) \(K\)-theory of the genus \(g\) commuting varieties \({C_{\mathfrak{gl}_r}=\big\{ (x_1, \dots, x_g, y_1, \dots, y_g) \in \mathfrak{gl}_r^{2g} \mid \sum_{i=1}^g [x_i,y_i]=0\big\}}\). This isomorphism can be viewed as a version of the geometric Langlands duality in the formal neighborhood of the trivial local system, for the group \(\mathrm{GL} _{r }\). This is extended to all reductive groups. Under this correspondence the image of the skyscraper sheaf supported on the trivial local system is computed.
Let \(X\) be a smooth connected projective curve of genus \(g\) defined over a finite field \(\mathbb F_q\). Let \(\mathcal C\!oh(X)\) be the category of coherent sheaves over \(X\), let \(\mathcal T\!or(X)\) be the full subcategory of torsion sheaves. Let \(\mathcal I\) be the set of isomorphism classes of coherent sheaves on \(X\). Consider the vector space \(\mathbf{H}_X\) of all functions \(f: \mathcal I\to \mathbb C\) with finite support. For a sheaf \(\mathcal F\) let \(r_{\mathcal F}\) and \(d_{\mathcal F}\) be its rank and degree respectively. For two sheaves \(\mathcal F\) and \(\mathcal G\) define the Euler form by \[ \langle\mathcal F, \mathcal G\rangle = \dim \operatorname{Hom}(\mathcal F, \mathcal G)-\dim \mathrm{Ext}^1(\mathcal F, \mathcal G)=(1-g)r_{\mathcal F}r_{\mathcal G}+(r_{\mathcal F}d_{\mathcal G}-r_{\mathcal G}d_{\mathcal F}). \] Choose a square root \(v\) of \(q^{-1}\). Then one defines on \(\mathbf{H}_X\) the multiplication \[ (f\cdot g)(\mathcal R)=\sum\limits_{\mathcal N\subseteq \mathcal R} v^{-\langle \mathcal R/\mathcal N, \mathcal N\rangle} f(\mathcal R/\mathcal N)g(\mathcal N). \] For \(d\in \mathbb Z\) let \(\mathrm{Pic}^d X\) be the set of isomorphism classes of line bundles on \(X\) of degree \(d\). For a line bundle on \(X\) let \(1_{\mathcal L}\) be the characteristic function of \(\mathcal L\), let \[ 1^{ss}_{1, d}=\sum\limits_{\mathcal L\in \mathrm{Pic}^d(X)} 1_{\mathcal L}. \] Denote by \(\mathbf{U}^>_X\) the subalgebra of \(\mathbf{H}_X\) generated by \(\{1_{1, d}^{ss}\}_{d\in \mathbb Z}\). The authors identify \(\mathbf{U}^>_X\) with a certain shuffle algebra \(\mathbf{A}\) in the space of symmetric polynomials.
For a fixed genus \(g\), let \(GSP\) be the group of the symplectic similitudes of \(\mathbb C^{2g}\) with the canonical symplectic form. Let \(R\) be the complexified representation ring of \(GSP\). Let \(K\) be its fraction field. Using the presentation of \(\mathbf{U}^>_X\) as a shuffle algebra and substituting the field \(\mathbb C\) by \(K\) the authors define the \(K\)-algebra \(\mathbf{A}_K\) and put \(\mathbf{U}^>_K=\text\textbf{A}_K\). Then \(\mathbf{A}_R\) is a torsion-free intergal form of \(\mathbf{A}_K\), i. e., an \(R\)-subalgebra of \(\mathbf{A}_K\) such that \(\mathbf{A}_R\otimes_R K=\text\textbf{A}_K\). For every fixed curve \(X\) of genus \(g\) there exists a natural specialization map \[ \mathbf{A}_R\to \text\textbf{U}^>_X. \] Hence one can put \(\mathbf{U}^>_R=\text\textbf{A}_R\) and call it the universal spherical Hall algebra of a fixed genus \(g\). Modifying the multiplication on \(\mathbf{U}^>_X\) using the tensoring by powers of the canonical bundle on \(X\) one can obtain its twisted version \(\dot{\mathbf{ {U}}}^>_X\) with associative multiplication. This also gives a presentation of \(\dot{\mathbf{ {U}}}^>_X\) as a shuffle algebra and hence there is its universal version \(\dot{\mathbf{ {U}}}^>_R\).
One constructs the spherical \(K\)-theoretic Hall algebra \(\bar{\mathbf{C}}\) as follows. Consider \[C_{\mathfrak{gl}_r}=\big\{ (x_1, \dots, x_g, y_1, \dots, y_g) \in \mathfrak{gl}_r^{2g} \mid \sum_{i=1}^g [x_i,y_i]=0\big\}.\] Since \(\mathrm{GL}_r\) acts by the adjoint action on \(\mathfrak{gl}_r\), there is an action of \(GSP\times \mathrm{GL}_r\) on \(C_{\mathfrak{gl}_r}\). Let \(K^{GSP\times \mathrm{GL}_r}(C_{\mathfrak{gl}_r})\) be the complexified Grothendieck group of the abelian category of the \((GSP\times \mathrm{GL}_r)\)-equivariant coherent sheaves over \(C_{\mathfrak{gl}_r}\). Then the convolution product in equivariant \(K\)-theory equips the graded space \[ \mathbf{C}= \mathbb C\cdot 1 \oplus \bigoplus_{r\geq 1} K^{GSP\times \mathrm{GL}_r}(C_{\mathfrak{gl}_r})=\bigoplus_{r\geq 0} \text\textbf{C}_r, \] with the structure of an associative \(R\)-algebra with \(1\). It’s subalgebra generated by elements of degree \(1\), i. e., by \(\mathbf{C}_1=K^{GSP\times \mathrm{GL}_1}(C_{\mathfrak{gl}_1})=K^{GSP\times \mathrm{GL}_1}(\mathbb C^{2g})\), is denoted by \(\mathbf{C}'\).
The inclusion \(C_{\mathfrak{gl}_r}\subset \mathfrak{gl}_r^g\times \mathfrak{gl}_r^g\) and the direct image construction induce a map \(\mathbf{C}_r\to K^{GSP\times \mathrm{GL}_r}(\mathfrak{gl}_r^g\times \mathfrak{gl}_r^g)\). The authors conjecture that this map is injective (cf. Conjecture 2.6). Let \(\bar{\mathbf{C}}_r\) be the image of \(\mathbf{C}'_r=\text\textbf{C}_r\cap \text\textbf{C}'\), let \(\bar{\mathbf{C}}=\bigoplus_{r\geq 0} \bar{\mathbf{C}}_r\), then there is a surjective \(R\)-algebra homomorphism \(\mathbf{C}'\to \bar{\text\textbf{C}}\), which is just an isomorphism if Conjecture 2.6 mentioned above is true.
The main result of the paper, Theorem 3.1, is a construction of an \(R\)-algebra anti-isomorphism \(\Theta_R: \bar{\mathbf{C}}\to \dot{\mathbf{ {U}}}^>_R\).
The paper under review consists of an introduction, 3 sections and two appendices. Section 1 deals with Hall algebras of curves. Section 2 is devoted to the Hall algebra in the \(K\)-theory of the genus \(g\) commuting varieties. In Section 3 the main result, i. e., the Langlands isomorphism, Theorem 3.1, is stated. The extensions of the results of the paper to the case of principal Hall algebra and to the case of arbitrary reductive groups are sketched in Appendix A and Appendix B respectively.

MSC:

14D24 Geometric Langlands program (algebro-geometric aspects)
22E57 Geometric Langlands program: representation-theoretic aspects
16S99 Associative rings and algebras arising under various constructions
19E99 \(K\)-theory in geometry
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Cite

References:

[1]Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I.. Preprint. math.AG/0505148 (2005) ·Zbl 1286.16029
[2]Chriss N., Ginzburg V.: Representation Theory and Complex Geometry. Birkhaüser, Boston (1996)
[3]Deligne, P.: Constantes des équations fonctionelles des fonctions L. In: Lecture Notes in Mathematics, vol. 349, pp. 501–597. Springer, Berlin (1973) ·Zbl 0271.14011
[4]Feigin B., Jimbo M., Miwa T., Mukhin E.: Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials. Int. Math. Res. Not. 18, 1015–1034 (2003) ·Zbl 1069.33019 ·doi:10.1155/S1073792803209119
[5]Feigin, B., Odesskii, A.: Vector bundles on an elliptic curve and Sklyanin algebras. In: Topics in Quantum Groups and Finite-type Invariants. Amer. Math. Soc. Transl. Ser. 2, vol. 185, pp. 65–84 (1998) ·Zbl 0916.16014
[6]Feigin, B., Tsymbaliuk, A.: Heisenberg action in the equivariant K-theory of Hilbert schemes via Shuffle Algebra. Preprint. arXiv:0904.1679 (2009) ·Zbl 1242.14006
[7]Fratila, D.: Cusp eigenforms and the Hall algebra of an elliptic curve, preprint ·Zbl 1355.11061
[8]Frenkel, E.: Lectures on the Langlands program and conformal field theory. In: Frontiers in Number Theory, Physics, and Geometry, II, pp. 387–533. Springer, Berlin (2007) ·Zbl 1196.11091
[9]Gaitsgory, D.: Automorphic sheaves and Eisenstein series. Thesis, Tel-Aviv University (1997) ·Zbl 0894.18007
[10]Grojnowski I.: Instantons and affine algebras I: the Hilbert scheme and vertex operators. Math. Res. Lett. 3, 275–291 (1996) ·Zbl 0879.17011 ·doi:10.4310/MRL.1996.v3.n2.a12
[11]Harder G.: Chevalley groups over function fields and automorphic forms. Ann. Math. 100(2), 249–306 (1974) ·Zbl 0309.14041 ·doi:10.2307/1971073
[12]Kapranov M.: Eisenstein series and quantum affine algebras Algebraic geometry, 7. J. Math. Sci. (New York) 84(5), 1311–1360 (1997) ·Zbl 0929.11015 ·doi:10.1007/BF02399194
[13]Langlands, R.P.: Euler products. In: A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. Yale Mathematical Monographs, vol. 1. Yale University Press, New Haven (1971) ·Zbl 0231.20017
[14]Lascoux, A.: Symmetric functions and combinatorial operators on polynomials. In: CBMS Regional Conference Series in Mathematics, vol. 99 (2003) ·Zbl 1039.05066
[15]Laumon, G.: Faisceaux automorphes asociées aux séries d’Eisenstein. Automorphic Forms, Shimura Varieties, and L-Functions, vol. I (Ann Arbor, MI, 1988), pp. 227–281 (1988)
[16]Laumon, G.: La transformation de Fourier géométrique et ses applications. In: Proceedings of the International Congress of Mathematicians, vols. I, II (Kyoto, 1990), pp. 437–445. Math. Soc. Japan, Tokyo (1991) ·Zbl 0759.14014
[17]Lusztig G.: Introduction to Quantum Groups. Birkhaüser, Boston (1992)
[18]Milne, J.S.: Abelian varieties. In: Arithmetic Geometry (Storrs, Conn., 1984), pp. 103–150. Springer, New York (1986)
[19]Ringel C.: Hall algebras and quantum groups. Invent. Math. 101(3), 583–591 (1990) ·Zbl 0735.16009 ·doi:10.1007/BF01231516
[20]Rosso M.: Quantum groups and quantum shuffles. Invent. Math. 133(2), 399–416 (1998) ·Zbl 0912.17005 ·doi:10.1007/s002220050249
[21]Schiffmann, O.: Lectures on Hall algebras I, II. Preprint. arXiv:0611617. Comptes-Rendus de l’école doctorale de Grenoble (2006, to appear)
[22]Schiffmann, O.: Spherical Hall algebras of curves and Harder-Narasimhan stratas. Preprint. arXiv:1002.0987 (2010) ·Zbl 1234.17012
[23]Schiffmann, O.: On the Hall algebra of an elliptic curve, II. Preprint arXiv:math/0508553 (2005)
[24]Schiffmann, O., Vasserot, E.: The elliptic Hall algebra, Cherednick Hecke algebras and Macdonald polynomials. Preprint. arXiv:0802.4001. Compositio (2008, to appear) ·Zbl 1234.20005
[25]Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the K-theory of the Hilbert scheme of $${\(\backslash\)mathbb{A}\^2}$$ . Preprint. arXiv:0905.2558 (2009) ·Zbl 1290.19001
[26]Thomason R.W.: Les K-groupes d’un schéma éclaté et une formule d’intersection excédentaire. Invent. Math. 112, 195–215 (1993) ·Zbl 0816.19004 ·doi:10.1007/BF01232430
[27]Varagnolo M., Vasserot E.: On the K-theory of the cyclic quiver variety. Int. Math. Res. Not. 18, 1005–1028 (1999) ·Zbl 1014.17017 ·doi:10.1155/S1073792899000525
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp