14D24 | Geometric Langlands program (algebro-geometric aspects) |
22E57 | Geometric Langlands program: representation-theoretic aspects |
16S99 | Associative rings and algebras arising under various constructions |
19E99 | \(K\)-theory in geometry |
17B37 | Quantum groups (quantized enveloping algebras) and related deformations |
[1] | Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I.. Preprint. math.AG/0505148 (2005) ·Zbl 1286.16029 |
[2] | Chriss N., Ginzburg V.: Representation Theory and Complex Geometry. Birkhaüser, Boston (1996) |
[3] | Deligne, P.: Constantes des équations fonctionelles des fonctions L. In: Lecture Notes in Mathematics, vol. 349, pp. 501–597. Springer, Berlin (1973) ·Zbl 0271.14011 |
[4] | Feigin B., Jimbo M., Miwa T., Mukhin E.: Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials. Int. Math. Res. Not. 18, 1015–1034 (2003) ·Zbl 1069.33019 ·doi:10.1155/S1073792803209119 |
[5] | Feigin, B., Odesskii, A.: Vector bundles on an elliptic curve and Sklyanin algebras. In: Topics in Quantum Groups and Finite-type Invariants. Amer. Math. Soc. Transl. Ser. 2, vol. 185, pp. 65–84 (1998) ·Zbl 0916.16014 |
[6] | Feigin, B., Tsymbaliuk, A.: Heisenberg action in the equivariant K-theory of Hilbert schemes via Shuffle Algebra. Preprint. arXiv:0904.1679 (2009) ·Zbl 1242.14006 |
[7] | Fratila, D.: Cusp eigenforms and the Hall algebra of an elliptic curve, preprint ·Zbl 1355.11061 |
[8] | Frenkel, E.: Lectures on the Langlands program and conformal field theory. In: Frontiers in Number Theory, Physics, and Geometry, II, pp. 387–533. Springer, Berlin (2007) ·Zbl 1196.11091 |
[9] | Gaitsgory, D.: Automorphic sheaves and Eisenstein series. Thesis, Tel-Aviv University (1997) ·Zbl 0894.18007 |
[10] | Grojnowski I.: Instantons and affine algebras I: the Hilbert scheme and vertex operators. Math. Res. Lett. 3, 275–291 (1996) ·Zbl 0879.17011 ·doi:10.4310/MRL.1996.v3.n2.a12 |
[11] | Harder G.: Chevalley groups over function fields and automorphic forms. Ann. Math. 100(2), 249–306 (1974) ·Zbl 0309.14041 ·doi:10.2307/1971073 |
[12] | Kapranov M.: Eisenstein series and quantum affine algebras Algebraic geometry, 7. J. Math. Sci. (New York) 84(5), 1311–1360 (1997) ·Zbl 0929.11015 ·doi:10.1007/BF02399194 |
[13] | Langlands, R.P.: Euler products. In: A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. Yale Mathematical Monographs, vol. 1. Yale University Press, New Haven (1971) ·Zbl 0231.20017 |
[14] | Lascoux, A.: Symmetric functions and combinatorial operators on polynomials. In: CBMS Regional Conference Series in Mathematics, vol. 99 (2003) ·Zbl 1039.05066 |
[15] | Laumon, G.: Faisceaux automorphes asociées aux séries d’Eisenstein. Automorphic Forms, Shimura Varieties, and L-Functions, vol. I (Ann Arbor, MI, 1988), pp. 227–281 (1988) |
[16] | Laumon, G.: La transformation de Fourier géométrique et ses applications. In: Proceedings of the International Congress of Mathematicians, vols. I, II (Kyoto, 1990), pp. 437–445. Math. Soc. Japan, Tokyo (1991) ·Zbl 0759.14014 |
[17] | Lusztig G.: Introduction to Quantum Groups. Birkhaüser, Boston (1992) |
[18] | Milne, J.S.: Abelian varieties. In: Arithmetic Geometry (Storrs, Conn., 1984), pp. 103–150. Springer, New York (1986) |
[19] | Ringel C.: Hall algebras and quantum groups. Invent. Math. 101(3), 583–591 (1990) ·Zbl 0735.16009 ·doi:10.1007/BF01231516 |
[20] | Rosso M.: Quantum groups and quantum shuffles. Invent. Math. 133(2), 399–416 (1998) ·Zbl 0912.17005 ·doi:10.1007/s002220050249 |
[21] | Schiffmann, O.: Lectures on Hall algebras I, II. Preprint. arXiv:0611617. Comptes-Rendus de l’école doctorale de Grenoble (2006, to appear) |
[22] | Schiffmann, O.: Spherical Hall algebras of curves and Harder-Narasimhan stratas. Preprint. arXiv:1002.0987 (2010) ·Zbl 1234.17012 |
[23] | Schiffmann, O.: On the Hall algebra of an elliptic curve, II. Preprint arXiv:math/0508553 (2005) |
[24] | Schiffmann, O., Vasserot, E.: The elliptic Hall algebra, Cherednick Hecke algebras and Macdonald polynomials. Preprint. arXiv:0802.4001. Compositio (2008, to appear) ·Zbl 1234.20005 |
[25] | Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the K-theory of the Hilbert scheme of $${\(\backslash\)mathbb{A}\^2}$$ . Preprint. arXiv:0905.2558 (2009) ·Zbl 1290.19001 |
[26] | Thomason R.W.: Les K-groupes d’un schéma éclaté et une formule d’intersection excédentaire. Invent. Math. 112, 195–215 (1993) ·Zbl 0816.19004 ·doi:10.1007/BF01232430 |
[27] | Varagnolo M., Vasserot E.: On the K-theory of the cyclic quiver variety. Int. Math. Res. Not. 18, 1005–1028 (1999) ·Zbl 1014.17017 ·doi:10.1155/S1073792899000525 |