Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Generalized trace and modified dimension functions on ribbon categories.(English)Zbl 1248.18006

Authors’ abstract: In this paper, we use topological techniques to construct generalized trace and modified dimension functions on ideals in certain ribbon categories. Examples of such ribbon categories naturally arise in representation theory where the usual trace and dimension functions are zero, but these generalized trace and modified dimension functions are nonzero. Such examples include categories of finite-dimensional modules of certain Lie algebras and finite groups over a field of positive characteristic and categories of finite-dimensional modules of basic Lie superalgebras over the complex numbers. These modified dimensions can be interpreted categorically and are closely related to some basic notions from representation theory.

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
17B99 Lie algebras and Lie superalgebras
20C99 Representation theory of groups

Cite

References:

[1]Alperin J.L.: Local Representation Theory. Studies in Advanced Mathematics, 11. Cambridge University Press, Cambridge (1986) ·Zbl 0593.20003
[2]Andersen H.H.: Tensor products of quantized tilting modules. Comm. Math. Phys. 149, 149–159 (1992) ·Zbl 0760.17004 ·doi:10.1007/BF02096627
[3]Archer L.: On certain quotients of the Green rings of dihedral 2-groups. J. Pure Appl. Algebra 212(8), 1888–1897 (2008) ·Zbl 1152.20002 ·doi:10.1016/j.jpaa.2007.11.012
[4]Bakalov B., Kirillov A. Jr.: Lectures on Tensor Categories and Modular Functors. University Lecture Series, 21. American Mathematical Society, Providence, RI (2001) ·Zbl 0965.18002
[5]Balmer P.: Supports and filtrations in algebraic geometry and modular representation theory. Amer. J. Math. 129(5), 1227–1250 (2007) ·Zbl 1130.18005 ·doi:10.1353/ajm.2007.0030
[6]Bar-Natan D., Le T., Thurston D.: Two applications of elementary knot theory to Lie algebras and Vassiliev invariants. Geom. Topol. 7, 1–31 (2003) ·Zbl 1032.57008 ·doi:10.2140/gt.2003.7.1
[7]Basev V.A.: Representations of the group Z 2 {\(\times\)} Z 2 in a field of characteristic 2, (Russian). Dokl. Akad. Nauk SSSR 141, 1015–1018 (1961)
[8]Benkart, G., Osborn, M.: Representations of Rank one Lie Algebras of Characteristic p, Lie Algebras and Related Topics, pp. 1–37, Lecture Notes in Math., p. 933. Springer, Berlin-New York (1982) ·Zbl 0491.17003
[9]Benson D.J.: Representations and Cohomology, I: Basic representation theory of finite groups and associative algebras. Second edition. Cambridge Studies in Advanced Mathematics, 30. Cambridge University Press, Cambridge (1998) ·Zbl 0908.20001
[10]Benson D.J.: Representations and Cohomology, II: Cohomology of groups and modules. Second edition. Cambridge Studies in Advanced Mathematics, 31. Cambridge University Press, Cambridge (1998) ·Zbl 0908.20002
[11]Benson D.J., Carlson J.F.: Nilpotent elements in the Green ring. J. Algebra 104(2), 329–350 (1986) ·Zbl 0612.20005 ·doi:10.1016/0021-8693(86)90219-X
[12]Berele A., Regev A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987) ·Zbl 0617.17002 ·doi:10.1016/0001-8708(87)90007-7
[13]Boe, B., Kujawa, J., Nakano, D.: Cohomology and support varieties for Lie superalgebras, Preprint. ·Zbl 1253.17012
[14]Boe, B., Kujawa, J., Nakano, D.: Cohomology and support varieties for Lie superalgebras, II, Proceedings of LMS, to appear. ·Zbl 1191.17007
[15]Brundan J.: Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $${{\(\backslash\)mathfrak{gl}(m|n)}}$$ . J. Amer. Math. Soc. 16, 185–231 (2003) ·Zbl 1050.17004 ·doi:10.1090/S0894-0347-02-00408-3
[16]Carlson J.F., Peng C.: Relative projectivity and ideals in cohomology rings. J. Algebra 183(3), 929–948 (1996) ·Zbl 0870.20032 ·doi:10.1006/jabr.1996.0245
[17]Conlon S.B.: Certain representation algebras. J. Aust. Math. Soc. 5, 83–99 (1965) ·Zbl 0229.16009 ·doi:10.1017/S1446788700025908
[18]Deligne, P.: La catégorie des représentations du groupe symétrique S t , lorsque t n’est pas un entier naturel, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., pp. 209–273. Mumbai (2007)
[19]Duflo, M., Serganova, V.: On Associated Variety for Lie Superalgebras. Preprint
[20]Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. Math. 162(2), 581–642 (2005) ·Zbl 1125.16025 ·doi:10.4007/annals.2005.162.581
[21]Freedman M., Kitaev A., Wang Z.: Simulation of topological field theories by quantum computers. Comm. Math. Phys. 227(3), 587–603 (2002) ·Zbl 1014.81006 ·doi:10.1007/s002200200635
[22]Freedman M., Kitaev A., Larson M., Wang Z.: Topological quantum computation. Bull. Am. Math. Soc. (N.S.) 40(1), 31–38 (2003) ·Zbl 1019.81008 ·doi:10.1090/S0273-0979-02-00964-3
[23]Friedlander E., Parshall B.: Support varieties for restricted Lie algebras. Invent. Math. 86, 553–562 (1996) ·Zbl 0626.17010 ·doi:10.1007/BF01389268
[24]Friedlander E., Parshall B.: Modular representation theory of Lie algebras. Amer. J. Math. 110(6), 1055–1093 (1988) ·Zbl 0673.17010 ·doi:10.2307/2374686
[25]Friedlander E., Pevtsova J.: {\(\Pi\)}-supports for modules for finite group schemes. Duke Math. J. 139(2), 317–368 (2007) ·Zbl 1128.20031 ·doi:10.1215/S0012-7094-07-13923-1
[26]Ganter N., Kapranov M.: Representation and character theory in 2-categories. Adv. Math. 217(5), 2268–2300 (2008) ·Zbl 1136.18001 ·doi:10.1016/j.aim.2007.10.004
[27]Geer, N., Patureau-Mirand, B.: Multivariable link invariants arising from Lie superalgebras of type I, preprint, arXiv:math/0609034v2, (2006) ·Zbl 1200.57010
[28]Geer N., Patureau-Mirand B.: An invariant trace for the category of representations of Lie superalgebras. Pacific J. Math. 238(2), 331–348 (2008) ·Zbl 1210.17010 ·doi:10.2140/pjm.2008.238.331
[29]Geer N., Patureau-Mirand B., Turaev V.: Modified quantum dimensions and re-normalized link invariants. Compos. Math. 145(1), 196–212 (2009) ·Zbl 1160.81022 ·doi:10.1112/S0010437X08003795
[30]Heller A., Reiner I.: Indecomposable representations. Ill. J. Math. 5, 314–323 (1961) ·Zbl 0111.03101
[31]Hovey, M., Palmieri, J., Strickland, N.: Axiomatic stable homotopy theory. Mem. Amer. Math. Soc. 128(610) (1997) ·Zbl 0881.55001
[32]Kac V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977) ·Zbl 0366.17012 ·doi:10.1016/0001-8708(77)90017-2
[33]Kac, V.G.: Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Math., vol. 676, pp. 597–626. Springer, Berlin (1978)
[34]Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and number theory, Lie theory and geometry. Progr. Math., vol. 123, pp. 415–456. Birkhäuser Boston, Boston, MA (1994) ·Zbl 0854.17028
[35]Kassel C.: Quantum Groups. Springer-Verlag GTM 155, Berlin (1995) ·Zbl 0808.17003
[36]Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I, preprint, arXiv:0803.4121v2, (2008) ·Zbl 1188.81117
[37]Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II, preprint, arXiv:0804.2080, (2008) ·Zbl 1214.81113
[38]Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups III, preprint, arXiv:0807.3250, (2008) ·Zbl 1188.81117
[39]Knop F.: Tensor envelopes of regular categories. Adv. Math. 214(2), 571–617 (2007) ·Zbl 1127.18004 ·doi:10.1016/j.aim.2007.03.001
[40]Kremnizer, K.: Proof of the De Concini-Kac-Procesi conjecture, arXiv:math/0611236v1, (2006)
[41]Kujawa J.: Crystal structures arising from representations of GL(m|n). Represent. Theory 10, 49–85 (2006) ·Zbl 1196.17011 ·doi:10.1090/S1088-4165-06-00219-6
[42]Lauda, A.: A categorification of quantum sl(2), preprint, arXiv:0803.3652v3, (2008)
[43]Macdonald I.G.: Symmetric Functions and Hall Polynomials. 2nd edn. Oxford University Press, Oxford (1995) ·Zbl 0824.05059
[44]Moens E.M., Van Der Jeugt J.: A determinental formula for supersymmetric Schur polynomials. J. Alg. Comb. 17, 283–307 (2003) ·Zbl 1020.05070 ·doi:10.1023/A:1025048821756
[45]Okuyama, T.: A generalization of projective covers of modules over finite group algebras, unpublished manuscript.
[46]Premet, A.: The Green ring of a simple three-dimensional Lie p-algebra, (Russian). Izv. Vyssh. Uchebn. Zaved. Mat. (10), 56–67; translation in Soviet Math. (Iz. VUZ) 35(10), 51–60 (1991) ·Zbl 0748.17015
[47]Premet A. Alexander: Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture. Invent. Math. 121(1), 79–117 (1995) ·Zbl 0828.17008 ·doi:10.1007/BF01884291
[48]Remmel, J.B.: The combinatorics of (k, l)-hook Schur functions. Combinatorics and algebra (Boulder, Colo., 1983), pp. 253–287, Contemp. Math., 34, Amer. Math. Soc., Providence, RI, (1984)
[49]Reshetikhin N., Turaev V.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547–597 (1991) ·Zbl 0725.57007 ·doi:10.1007/BF01239527
[50]Rouquier, R.: 2-Kac-Moody algebras, preprint, arXiv:0812.5023v1, (2008)
[51]Serganova, V.: On Kac Wakimoto conjecture about dimension of simple representation of Lie superalgebra. Manaus, Brazil, July 7 (2009)
[52]Sergeev A.: Tensor algebra of the identity representation as a module over the Lie superalgebras GL(n, m) and Q(n). Math. USSR Sbornik 51, 419–427 (1985) ·Zbl 0573.17002 ·doi:10.1070/SM1985v051n02ABEH002867
[53]Stembridge J.: Multiplicity-free products of Schur functions. Ann. Comb. 5(2), 113–121 (2001) ·Zbl 0990.05130 ·doi:10.1007/s00026-001-8008-6
[54]Turaev V.G.: Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, 18. Walter de Gruyter & Co., Berlin (1994) ·Zbl 0812.57003
[55]Wang, W., Zhao, L.: Representations of Lie superalgebras in prime characteristic I. Proc. London Math. Soc., to appear. ·Zbl 1176.17013
[56]Witten E.: Topological quantum field theory. Comm. Math. Phys. 117(3), 353–386 (1988) ·Zbl 0656.53078 ·doi:10.1007/BF01223371
[57]Witten E.: Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121(3), 351–399 (1989) ·Zbl 0667.57005 ·doi:10.1007/BF01217730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp