Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Crystals from categorified quantum groups.(English)Zbl 1246.17017

Let \(\mathfrak{g}\) be a symmetrizable Kac-Moody algebra and denote by \(_{\mathcal{A}}\mathbf{U}^{-}_{q}\) the integral form of the negative part of the quantum enveloping algebra associated to \(\mathfrak{g}\). From previous works of the first author and M. Khovanov and R. Rouquier it is known that a family \(R=\bigoplus R(\nu)\) of graded algebras categorify \(_{\mathcal{A}}\mathbf{U}^{-}_{q}\), that is, there exists an isomorphism between this algebra and the Grothendieck group of finitely generated projective \(R\)-modules. In this paper, the authors give a new proof of this result by using crystal-theoretic methods.
By an algebraic treatment of the affine Hecke algebra and its cyclotomic quotients, they determine the size of the Grothendieck group for arbitrary cyclotomic quotients \(R^{\Lambda}(\nu)\) in order to introduce crystal structure on categories of modules. This allows to view cyclotomic quotients of the algebras \(R(\nu)\) as a categorification of the integrable highest weight representation \(V(\Lambda)\) of \(\mathbf{U}^{-}_{q}\), which proves partially a conjecture on cyclotomic quotients in the general setting stated by the first author and Khovanov. These results are then used to give the alternative proof of the categorification theorem which goes along entirely in the category of finitely generated modules.
The article is well-written and carefully organized. It contains all the preliminaries that are needed through the paper and ends with a section that contains the proof of the main theorems.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16T20 Ring-theoretic aspects of quantum groups

Cite

References:

[1]Ariki, S., On the decomposition numbers of the Hecke algebra of \(G(m, 1, n)\), J. Math. Kyoto Univ., 36, 4, 789-808 (1996) ·Zbl 0888.20011
[2]Ariki, S., Lectures on cyclotomic Hecke algebras (1999) ·Zbl 1060.20008
[3]Ariki, S., Representations of Quantum Algebras and Combinatorics of Young Tableaux, Univ. Lecture Ser., vol. 26 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1003.17008
[4]Ariki, S., Graded \(q\)-Schur algebras (2009)
[5]Ariki, S.; Koike, K., A Hecke algebra of \((Z / r Z) \wr S_n\) and construction of its irreducible representations, Adv. Math., 106, 2, 216-243 (1994) ·Zbl 0840.20007
[6]Ariki, S.; Mathas, A., The number of simple modules of the Hecke algebras of type \(G(r, 1, n)\), Math. Z., 233, 3, 601-623 (2000) ·Zbl 0955.20003
[7]Bernstein, I. N.; Zelevinsky, A. V., Induced representations of reductive \(p\)-adic groups. I, Ann. Sci. Éc. Norm. Super. (4), 10, 4, 441-472 (1977) ·Zbl 0412.22015
[8]Broué, M.; Malle, G., Zyklotomische Heckealgebren, Astérisque, 212, 119-189 (1993), Représentations unipotentes génériques et blocs des groupes réductifs finis ·Zbl 0835.20064
[9]Brundan, J.; Kleshchev, A., Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math., 178, 3, 451-484 (2009) ·Zbl 1201.20004
[10]Brundan, J.; Kleshchev, A., Graded decomposition numbers for cyclotomic Hecke algebras (2009) ·Zbl 1241.20003
[11]Brundan, J.; Kleshchev, A.; Wang, W., Graded Specht modules (2009)
[12]Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanovʼs diagram algebra III: category \(O (2008)\)
[13]Cherednik, I., A new interpretation of Gelʼfand-Tzetlin bases, Duke Math. J., 54, 2, 563-577 (1987) ·Zbl 0645.17006
[14]Chuang, J.; Rouquier, R., Derived equivalences for symmetric groups and \(sl_2\)-categorification, Ann. of Math., 167, 245-298 (2008) ·Zbl 1144.20001
[15]Enomoto, N.; Kashiwara, M., Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad. Ser. A Math. Sci., 82, 8, 131-136 (2006) ·Zbl 1130.20008
[16]Grojnowski, I., Representations of affine Hecke algebras (and affine quantum \(GL_n)\) at roots of unity, Int. Math. Res. Not. IMRN, 5 (1994), 215 ff., approx. 3 pp. (electronic) ·Zbl 0819.17009
[17]Grojnowski, I., Affine \(sl_p\) controls the representation theory of the symmetric group and related Hecke algebras (1999)
[18]Grojnowski, I.; Lusztig, G., A comparison of bases of quantized enveloping algebras, (Linear Algebraic Groups and Their Representations. Linear Algebraic Groups and Their Representations, Los Angeles, CA, 1992. Linear Algebraic Groups and Their Representations. Linear Algebraic Groups and Their Representations, Los Angeles, CA, 1992, Contemp. Math., vol. 153 (1993)), 11-19 ·Zbl 1009.17502
[19]Grojnowski, I.; Vazirani, M., Strong multiplicity one theorems for affine Hecke algebras of type A, Transform. Groups, 6, 2, 143-155 (2001) ·Zbl 1056.20002
[20]Hoffnung, A.; Lauda, A. D., Nilpotency in type A cyclotomic quotients, J. Algebraic Combin., 32, 533-555 (2010) ·Zbl 1244.20004
[21]Hong, J.; Kang, S. J., Introduction to Quantum Groups and Crystal Bases, Grad. Stud. Math., vol. 42 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1134.17007
[22]Hu, J.; Mathas, A., Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A (2009) ·Zbl 1230.20005
[23]Kang, S. J.; Kashiwara, M., Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras (2011) ·Zbl 1280.17017
[24]Kashiwara, M., Bases cristallines, C. R. Acad. Sci. Paris Sér. I Math., 311, 6, 277-280 (1990) ·Zbl 0724.17008
[25]Kashiwara, M., Crystalizing the \(q\)-analogue of universal enveloping algebras, Comm. Math. Phys., 133, 2, 249-260 (1990) ·Zbl 0724.17009
[26]Kashiwara, M., On crystal bases of the \(Q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 2, 465-516 (1991) ·Zbl 0739.17005
[27]Kashiwara, M., Global crystal bases of quantum groups, Duke Math. J., 69, 2, 455-485 (1993) ·Zbl 0774.17018
[28]Kashiwara, M., On crystal bases, (Representations of Groups. Representations of Groups, Banff, AB, 1994. Representations of Groups. Representations of Groups, Banff, AB, 1994, CMS Conf. Proc., vol. 16 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 155-197 ·Zbl 0851.17014
[29]Kashiwara, M.; Miemietz, V., Crystals and affine Hecke algebras of type \(D\), Proc. Japan Acad. Ser. A Math. Sci., 83, 7, 135-139 (2007) ·Zbl 1206.17014
[30]Kashiwara, M.; Saito, Y., Geometric construction of crystal bases, Duke Math. J., 89, 1, 9-36 (1997) ·Zbl 0901.17006
[31]Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 309-347 (2009) ·Zbl 1188.81117
[32]Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups III, Quantum Topol., 1, 1-92 (2010)
[33]Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc., 363, 2685-2700 (2011) ·Zbl 1214.81113
[34]Kleshchev, A., Branching rules for modular representations of symmetric groups. II, J. Reine Angew. Math., 459, 163-212 (1995) ·Zbl 0817.20009
[35]Kleshchev, A., Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux, J. Lond. Math. Soc. (2), 54, 1, 25-38 (1996) ·Zbl 0854.20014
[36]Kleshchev, A., On decomposition numbers and branching coefficients for symmetric and special linear groups, Proc. Lond. Math. Soc. (3), 75, 3, 497-558 (1997) ·Zbl 0907.20023
[37]Kleshchev, A., Linear and Projective Representations of Symmetric Groups, Cambridge Tracts in Math., vol. 163 (2005), Cambridge Univ. Press ·Zbl 1080.20011
[38]Kleshchev, A.; Ram, A., Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words (2009) ·Zbl 1267.20010
[39]Kleshchev, A.; Ram, A., Homogeneous representations of Khovanov-Lauda algebras, J. Eur. Math. Soc. (JEMS), 12, 5, 1293-1306 (2010) ·Zbl 1241.20005
[40]Lascoux, A.; Leclerc, B.; Thibon, J.-Y., Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys., 181, 1, 205-263 (1996) ·Zbl 0874.17009
[41]Lauda, A. D., A categorification of quantum sl(2), Adv. Math., 225, 3327-3424 (2008) ·Zbl 1219.17012
[42]Leclerc, B., Dual canonical bases, quantum shuffles and \(q\)-characters, Math. Z., 246, 4, 691-732 (2004) ·Zbl 1052.17008
[43]Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3, 2, 447-498 (1990) ·Zbl 0703.17008
[44]Lusztig, G., Canonical bases arising from quantized enveloping algebras. II, Common Trends in Mathematics and Quantum Field Theories, 1990. Common Trends in Mathematics and Quantum Field Theories, 1990, Kyoto, 1990. Common Trends in Mathematics and Quantum Field Theories, 1990. Common Trends in Mathematics and Quantum Field Theories, 1990, Kyoto, 1990, Progr. Theoret. Phys. Suppl., 102, 175-201 (1991) ·Zbl 0776.17012
[45]Lusztig, G., Quivers perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., 4, 2, 365-421 (1991) ·Zbl 0738.17011
[46]Lusztig, G., Introduction to Quantum Groups, Progr. Math., vol. 110 (1993), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA ·Zbl 0788.17010
[47]Lusztig, G., Canonical bases and Hall algebras, (Representation Theories and Algebraic Geometry. Representation Theories and Algebraic Geometry, Montreal, PQ, 1997. Representation Theories and Algebraic Geometry. Representation Theories and Algebraic Geometry, Montreal, PQ, 1997, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514 (1998), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 365-399 ·Zbl 0934.17010
[48]Mathas, A., Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, Univ. Lecture Ser., vol. 15 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 0940.20018
[49]Misra, K.; Miwa, T., Crystal base for the basic representation of \(U_q(sl(n))\), Comm. Math. Phys., 134, 1, 79-88 (1990) ·Zbl 0724.17010
[50]Nakajima, H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., 76, 2, 365-416 (1994) ·Zbl 0826.17026
[51]Năstăsescu, C.; Van Oystaeyen, F., Methods of Graded Rings, Lecture Notes in Math., vol. 1836 (2004), Springer-Verlag: Springer-Verlag Berlin ·Zbl 1043.16017
[52]Ringel, C., Hall algebras and quantum groups, Invent. Math., 101, 3, 583-591 (1990) ·Zbl 0735.16009
[53]Rouquier, R., 2-Kac-Moody algebras (2008)
[54]Columbia University RTG Undergraduate Research, G. Kim, A. Kontaxis, D. Xia, 2008; C. Bregman, R. Legg, J. McIvor, D. Wang, 2009.; Columbia University RTG Undergraduate Research, G. Kim, A. Kontaxis, D. Xia, 2008; C. Bregman, R. Legg, J. McIvor, D. Wang, 2009.
[55]Shan, P.; Varagnolo, M.; Vasserot, E., Canonical bases and affine Hecke algebras of type D (2009) ·Zbl 1235.20006
[56]Varagnolo, M.; Vasserot, E., Canonical bases and affine Hecke algebras of type B (2009) ·Zbl 1239.20007
[57]Varagnolo, M.; Vasserot, E., Canonical bases and Khovanov-Lauda algebras (2009) ·Zbl 1237.20008
[58]M. Vazirani, Irreducible modules over the affine Hecke algebra: a strong multiplicity one result, PhD thesis, UC Berkeley, 1999.; M. Vazirani, Irreducible modules over the affine Hecke algebra: a strong multiplicity one result, PhD thesis, UC Berkeley, 1999.
[59]Vazirani, M., Parameterizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs (2002) ·Zbl 1061.20007
[60]Webster, B., Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products (2010)
[61]Zelevinsky, A., Induced representations of reductive p-adic groups. II. On irreducible representations of \(GL(n)\), Ann. Sci. Éc. Norm. Super. (4), 13, 2, 165-210 (1980) ·Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp