[1] | Ariki, S., On the decomposition numbers of the Hecke algebra of \(G(m, 1, n)\), J. Math. Kyoto Univ., 36, 4, 789-808 (1996) ·Zbl 0888.20011 |
[2] | Ariki, S., Lectures on cyclotomic Hecke algebras (1999) ·Zbl 1060.20008 |
[3] | Ariki, S., Representations of Quantum Algebras and Combinatorics of Young Tableaux, Univ. Lecture Ser., vol. 26 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1003.17008 |
[4] | Ariki, S., Graded \(q\)-Schur algebras (2009) |
[5] | Ariki, S.; Koike, K., A Hecke algebra of \((Z / r Z) \wr S_n\) and construction of its irreducible representations, Adv. Math., 106, 2, 216-243 (1994) ·Zbl 0840.20007 |
[6] | Ariki, S.; Mathas, A., The number of simple modules of the Hecke algebras of type \(G(r, 1, n)\), Math. Z., 233, 3, 601-623 (2000) ·Zbl 0955.20003 |
[7] | Bernstein, I. N.; Zelevinsky, A. V., Induced representations of reductive \(p\)-adic groups. I, Ann. Sci. Éc. Norm. Super. (4), 10, 4, 441-472 (1977) ·Zbl 0412.22015 |
[8] | Broué, M.; Malle, G., Zyklotomische Heckealgebren, Astérisque, 212, 119-189 (1993), Représentations unipotentes génériques et blocs des groupes réductifs finis ·Zbl 0835.20064 |
[9] | Brundan, J.; Kleshchev, A., Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math., 178, 3, 451-484 (2009) ·Zbl 1201.20004 |
[10] | Brundan, J.; Kleshchev, A., Graded decomposition numbers for cyclotomic Hecke algebras (2009) ·Zbl 1241.20003 |
[11] | Brundan, J.; Kleshchev, A.; Wang, W., Graded Specht modules (2009) |
[12] | Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanovʼs diagram algebra III: category \(O (2008)\) |
[13] | Cherednik, I., A new interpretation of Gelʼfand-Tzetlin bases, Duke Math. J., 54, 2, 563-577 (1987) ·Zbl 0645.17006 |
[14] | Chuang, J.; Rouquier, R., Derived equivalences for symmetric groups and \(sl_2\)-categorification, Ann. of Math., 167, 245-298 (2008) ·Zbl 1144.20001 |
[15] | Enomoto, N.; Kashiwara, M., Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad. Ser. A Math. Sci., 82, 8, 131-136 (2006) ·Zbl 1130.20008 |
[16] | Grojnowski, I., Representations of affine Hecke algebras (and affine quantum \(GL_n)\) at roots of unity, Int. Math. Res. Not. IMRN, 5 (1994), 215 ff., approx. 3 pp. (electronic) ·Zbl 0819.17009 |
[17] | Grojnowski, I., Affine \(sl_p\) controls the representation theory of the symmetric group and related Hecke algebras (1999) |
[18] | Grojnowski, I.; Lusztig, G., A comparison of bases of quantized enveloping algebras, (Linear Algebraic Groups and Their Representations. Linear Algebraic Groups and Their Representations, Los Angeles, CA, 1992. Linear Algebraic Groups and Their Representations. Linear Algebraic Groups and Their Representations, Los Angeles, CA, 1992, Contemp. Math., vol. 153 (1993)), 11-19 ·Zbl 1009.17502 |
[19] | Grojnowski, I.; Vazirani, M., Strong multiplicity one theorems for affine Hecke algebras of type A, Transform. Groups, 6, 2, 143-155 (2001) ·Zbl 1056.20002 |
[20] | Hoffnung, A.; Lauda, A. D., Nilpotency in type A cyclotomic quotients, J. Algebraic Combin., 32, 533-555 (2010) ·Zbl 1244.20004 |
[21] | Hong, J.; Kang, S. J., Introduction to Quantum Groups and Crystal Bases, Grad. Stud. Math., vol. 42 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1134.17007 |
[22] | Hu, J.; Mathas, A., Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A (2009) ·Zbl 1230.20005 |
[23] | Kang, S. J.; Kashiwara, M., Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras (2011) ·Zbl 1280.17017 |
[24] | Kashiwara, M., Bases cristallines, C. R. Acad. Sci. Paris Sér. I Math., 311, 6, 277-280 (1990) ·Zbl 0724.17008 |
[25] | Kashiwara, M., Crystalizing the \(q\)-analogue of universal enveloping algebras, Comm. Math. Phys., 133, 2, 249-260 (1990) ·Zbl 0724.17009 |
[26] | Kashiwara, M., On crystal bases of the \(Q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 2, 465-516 (1991) ·Zbl 0739.17005 |
[27] | Kashiwara, M., Global crystal bases of quantum groups, Duke Math. J., 69, 2, 455-485 (1993) ·Zbl 0774.17018 |
[28] | Kashiwara, M., On crystal bases, (Representations of Groups. Representations of Groups, Banff, AB, 1994. Representations of Groups. Representations of Groups, Banff, AB, 1994, CMS Conf. Proc., vol. 16 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 155-197 ·Zbl 0851.17014 |
[29] | Kashiwara, M.; Miemietz, V., Crystals and affine Hecke algebras of type \(D\), Proc. Japan Acad. Ser. A Math. Sci., 83, 7, 135-139 (2007) ·Zbl 1206.17014 |
[30] | Kashiwara, M.; Saito, Y., Geometric construction of crystal bases, Duke Math. J., 89, 1, 9-36 (1997) ·Zbl 0901.17006 |
[31] | Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 309-347 (2009) ·Zbl 1188.81117 |
[32] | Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups III, Quantum Topol., 1, 1-92 (2010) |
[33] | Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc., 363, 2685-2700 (2011) ·Zbl 1214.81113 |
[34] | Kleshchev, A., Branching rules for modular representations of symmetric groups. II, J. Reine Angew. Math., 459, 163-212 (1995) ·Zbl 0817.20009 |
[35] | Kleshchev, A., Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux, J. Lond. Math. Soc. (2), 54, 1, 25-38 (1996) ·Zbl 0854.20014 |
[36] | Kleshchev, A., On decomposition numbers and branching coefficients for symmetric and special linear groups, Proc. Lond. Math. Soc. (3), 75, 3, 497-558 (1997) ·Zbl 0907.20023 |
[37] | Kleshchev, A., Linear and Projective Representations of Symmetric Groups, Cambridge Tracts in Math., vol. 163 (2005), Cambridge Univ. Press ·Zbl 1080.20011 |
[38] | Kleshchev, A.; Ram, A., Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words (2009) ·Zbl 1267.20010 |
[39] | Kleshchev, A.; Ram, A., Homogeneous representations of Khovanov-Lauda algebras, J. Eur. Math. Soc. (JEMS), 12, 5, 1293-1306 (2010) ·Zbl 1241.20005 |
[40] | Lascoux, A.; Leclerc, B.; Thibon, J.-Y., Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys., 181, 1, 205-263 (1996) ·Zbl 0874.17009 |
[41] | Lauda, A. D., A categorification of quantum sl(2), Adv. Math., 225, 3327-3424 (2008) ·Zbl 1219.17012 |
[42] | Leclerc, B., Dual canonical bases, quantum shuffles and \(q\)-characters, Math. Z., 246, 4, 691-732 (2004) ·Zbl 1052.17008 |
[43] | Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3, 2, 447-498 (1990) ·Zbl 0703.17008 |
[44] | Lusztig, G., Canonical bases arising from quantized enveloping algebras. II, Common Trends in Mathematics and Quantum Field Theories, 1990. Common Trends in Mathematics and Quantum Field Theories, 1990, Kyoto, 1990. Common Trends in Mathematics and Quantum Field Theories, 1990. Common Trends in Mathematics and Quantum Field Theories, 1990, Kyoto, 1990, Progr. Theoret. Phys. Suppl., 102, 175-201 (1991) ·Zbl 0776.17012 |
[45] | Lusztig, G., Quivers perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., 4, 2, 365-421 (1991) ·Zbl 0738.17011 |
[46] | Lusztig, G., Introduction to Quantum Groups, Progr. Math., vol. 110 (1993), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA ·Zbl 0788.17010 |
[47] | Lusztig, G., Canonical bases and Hall algebras, (Representation Theories and Algebraic Geometry. Representation Theories and Algebraic Geometry, Montreal, PQ, 1997. Representation Theories and Algebraic Geometry. Representation Theories and Algebraic Geometry, Montreal, PQ, 1997, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514 (1998), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 365-399 ·Zbl 0934.17010 |
[48] | Mathas, A., Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, Univ. Lecture Ser., vol. 15 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 0940.20018 |
[49] | Misra, K.; Miwa, T., Crystal base for the basic representation of \(U_q(sl(n))\), Comm. Math. Phys., 134, 1, 79-88 (1990) ·Zbl 0724.17010 |
[50] | Nakajima, H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., 76, 2, 365-416 (1994) ·Zbl 0826.17026 |
[51] | Năstăsescu, C.; Van Oystaeyen, F., Methods of Graded Rings, Lecture Notes in Math., vol. 1836 (2004), Springer-Verlag: Springer-Verlag Berlin ·Zbl 1043.16017 |
[52] | Ringel, C., Hall algebras and quantum groups, Invent. Math., 101, 3, 583-591 (1990) ·Zbl 0735.16009 |
[53] | Rouquier, R., 2-Kac-Moody algebras (2008) |
[54] | Columbia University RTG Undergraduate Research, G. Kim, A. Kontaxis, D. Xia, 2008; C. Bregman, R. Legg, J. McIvor, D. Wang, 2009.; Columbia University RTG Undergraduate Research, G. Kim, A. Kontaxis, D. Xia, 2008; C. Bregman, R. Legg, J. McIvor, D. Wang, 2009. |
[55] | Shan, P.; Varagnolo, M.; Vasserot, E., Canonical bases and affine Hecke algebras of type D (2009) ·Zbl 1235.20006 |
[56] | Varagnolo, M.; Vasserot, E., Canonical bases and affine Hecke algebras of type B (2009) ·Zbl 1239.20007 |
[57] | Varagnolo, M.; Vasserot, E., Canonical bases and Khovanov-Lauda algebras (2009) ·Zbl 1237.20008 |
[58] | M. Vazirani, Irreducible modules over the affine Hecke algebra: a strong multiplicity one result, PhD thesis, UC Berkeley, 1999.; M. Vazirani, Irreducible modules over the affine Hecke algebra: a strong multiplicity one result, PhD thesis, UC Berkeley, 1999. |
[59] | Vazirani, M., Parameterizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs (2002) ·Zbl 1061.20007 |
[60] | Webster, B., Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products (2010) |
[61] | Zelevinsky, A., Induced representations of reductive p-adic groups. II. On irreducible representations of \(GL(n)\), Ann. Sci. Éc. Norm. Super. (4), 13, 2, 165-210 (1980) ·Zbl 0441.22014 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.