Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry.(English)Zbl 1245.52001

Summary: The \(L_p\)-Minkowski problem introduced by Lutwak is solved for \(p\geq n+1\) in the smooth category. The relevant Monge-Ampère equation \[\det(h_{ij}+h\delta_{ij})=fh^{p-1} \tag{0.1}\] is solved for all \(p>1\) where \(h_{ij}\) denotes convariant differentiation. The same equation for \(p<1\) is also studied and solved for \(p\in(-n-1,1)\). When \(p=-n-1\) the equation is interpreted as a Minkowski problem in centroaffine geometry. A Kazdan-Warner-type obstruction for this problem is obtained.

MSC:

52A38 Length, area, volume and convex sets (aspects of convex geometry)
35J20 Variational methods for second-order elliptic equations
35J60 Nonlinear elliptic equations
52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)
52A39 Mixed volumes and related topics in convex geometry
52A40 Inequalities and extremum problems involving convexity in convex geometry
53A15 Affine differential geometry

Cite

References:

[1]Ai, J.; Chou, K. S.; Wei, J., Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations, 13, 311-337 (2001) ·Zbl 1086.35035
[2]Andrews, B., Evolving convex curves, Cal. Var. Partial Differential Equations, 7, 315-371 (1998) ·Zbl 0931.53030
[3]Andrews, B., Gauss curvature flows: the fate of the rolling stones, Invent. Math., 138, 151-161 (1999) ·Zbl 0936.35080
[4]Andrews, B., Motion of hypersurfaces by Gauss curvature, Pacific J. Math., 195, 1-34 (2000) ·Zbl 1028.53072
[5]Andrews, B., Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16, 443-459 (2003) ·Zbl 1023.53051
[6]Caffarelli, L. A., A localization property of viscosity solutions to the Monge-Ampire equation and their strict convexity, Ann. Math., 131, 129-134 (1990) ·Zbl 0704.35045
[7]Caffarelli, L. A., Interior \(W^{2, p}\)-estimate for solutions of the Monge-Ampère equations, Ann. Math., 131, 135-150 (1990) ·Zbl 0704.35044
[8]K.S. Chou, X.J. Wang, Existence of solutions to a generalized Minkowski problem, Manuscript, 1995.; K.S. Chou, X.J. Wang, Existence of solutions to a generalized Minkowski problem, Manuscript, 1995.
[9]Chou, K. S.; Wang, X. J., The logarithmic Gauss curvature flow, Ann. Inst. H. Poincarè Anal. Non Linèaire, 17, 733-751 (2000) ·Zbl 1071.53534
[10]Chou, K. S.; Wang, X. J., A variational theory of the Hessian equation, Comm. Pure Appl. Math., 54, 1029-1064 (2001) ·Zbl 1035.35037
[11]Cheng, S. Y.; Yau, S. T., On the regularity of the \(n\)-dimensional Minkowski problem, Comm. Pure Appl. Math., 20, 41-68 (1977)
[12]Firey, W. J., \(p\)-means of convex bodies, Math. Scand., 10, 17-24 (1968) ·Zbl 0188.27303
[13]P. Guan, C.-S. Lin, On equation \(\det( u_{\mathit{ij}} + \delta_{\mathit{ij}} u) = u^p f \text{on} S^n\); P. Guan, C.-S. Lin, On equation \(\det( u_{\mathit{ij}} + \delta_{\mathit{ij}} u) = u^p f \text{on} S^n\)
[14]C. Loewner, L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, Contribution to Analysis, Academic Press, New York, 1974, pp. 245-272.; C. Loewner, L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, Contribution to Analysis, Academic Press, New York, 1974, pp. 245-272. ·Zbl 0298.35018
[15]Lutwak, E., The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem, J. Differential Geom., 38, 131-150 (1993), II: affine and geominimal surface areas, Adv. Math. 118 (1996) 244-294 ·Zbl 0788.52007
[16]Lutwak, E.; Oliker, V., On the regularity of solution to a generalization of the Minkowski problem, J. Differential Geom., 40, 227-246 (1995) ·Zbl 0867.52003
[17]Lutwak, E.; Yang, D.; Zhang, G., On the \(L_p\)-Minkowski problem, Trans. Amer. Math. Soc., 356, 4359-4370 (2004) ·Zbl 1069.52010
[18]Lutwak, E.; Yang, D.; Zhang, G., Sharp affine \(L_p\) Sobolev inequalities, J. Differential Geom., 62, 17-38 (2002) ·Zbl 1073.46027
[19]K. Nomizu, T. Sasaki, Affine Differential Geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, New York, 1994.; K. Nomizu, T. Sasaki, Affine Differential Geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, New York, 1994. ·Zbl 0834.53002
[20]Pogorelov, A. V., The Multidimensional Minkowski Problem (1978), Wiley: Wiley New York ·Zbl 0387.53023
[21]R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.; R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. ·Zbl 0798.52001
[22]Tzitzéica, G., Sur une nouvelle classe de surfaces, Rend. Circ. Mat. Palermo, 25, 180-187 (1908), 28 (1909) 210-216 ·JFM 39.0685.05
[23]Urbas, J., Complete noncompact self-similar solutions of Gauss curvature flows. I. Positive powers, Math. Ann., 311, 251-274 (1998) ·Zbl 0910.53043
[24]Urbas, J., Complete noncompact self-similar solutions of Gauss curvature flows. II. Negative powers, Adv. Differential Equations, 4, 323-346 (1999) ·Zbl 0957.53033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp