Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

On the number of factorizations of an integer.(English)Zbl 1245.11100

Let \(f(n)\) denote the number of unordered factorizations of a positive integer \(n\) as a product of factors \(>1\). The authors prove that the number of distinct values \(\leq x\) of \(f(n)\) is \(\leq\exp(9(\log x)^{2/3})\) for all \(x\geq 1\). This improves the first result in [Acta Arith. 142, No. 1, 41–50 (2010;Zbl 1213.11020)] byF. Luca,A. Mukhopadhyay andK. Srinivas. A key step in the proof is to show that the number \(q(m)\) of representations \(m=\lfloor\sqrt{\alpha_1}\rfloor+ \lfloor\sqrt{\alpha_2}\rfloor+\cdots+ \lfloor\sqrt{\alpha_k}\rfloor\) with positive integers \(\alpha_1\geq \alpha_2\geq\cdots\geq \alpha_k\) satisfies \(q(m)\leq\exp(5m^{2/3})\) for all \(m\geq 1\).

MSC:

11N25 Distribution of integers with specified multiplicative constraints
11P81 Elementary theory of partitions

Citations:

Zbl 1213.11020

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp