18G25 | Relative homological algebra, projective classes (category-theoretic aspects) |
18G35 | Chain complexes (category-theoretic aspects), dg categories |
18E30 | Derived categories, triangulated categories (MSC2010) |
16E35 | Derived categories and associative algebras |
[1] | Auslander, Representation Dimension of Artin Algebras, Lecture Notes (1971) ·Zbl 0331.16026 |
[2] | Auslander, The homological theory of maximal Cohen-Macaulay approximations, Memoire de la S.M.F. 2e serie, tome 38 pp 5– (1989) ·Zbl 0697.13005 |
[3] | Auslander, Applications of contravariantly finite subcategories, Adv. Math. 86 (1) pp 111– (1991) ·Zbl 0774.16006 ·doi:10.1016/0001-8708(91)90037-8 |
[4] | Auslander, Representation Theory of Artin Algebras (1995) ·Zbl 0834.16001 ·doi:10.1017/CBO9780511623608 |
[5] | Beligiannis, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co)stabilization, Comm. Algebra 28 pp 4547– (2000) ·Zbl 0964.18006 ·doi:10.1080/00927870008827105 |
[6] | Beligiannis, Homotopy theory of modules and Gorenstein rings, Mathematica Scand. 89 pp 5– (2001) ·Zbl 1023.55009 ·doi:10.7146/math.scand.a-14329 |
[7] | Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra 288 pp 137– (2005) ·Zbl 1119.16007 ·doi:10.1016/j.jalgebra.2005.02.022 |
[8] | Beligiannis, Homological and Homotopical Aspects of Torsion Theories Memories of the American Mathematical Society (2007) ·Zbl 1124.18005 |
[9] | R. O. Buchweitz Maximal Cohen-Macaulay Modules and Tate Cohomology over Gorenstein Rings 1987 https://tspace.library.utoronto.ca/handle/1807/16682 |
[10] | Chen, Quotient triangulated categories, Manuscripta Math. 123 pp 167– (2007) ·Zbl 1129.16011 ·doi:10.1007/s00229-007-0090-6 |
[11] | Enochs, Relative Homological Algebra, de Gruyter Expositions in Mathematics (2000) ·Zbl 0952.13001 ·doi:10.1515/9783110803662 |
[12] | Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Mathematical Society Lecture Notes Series (1988) ·Zbl 0635.16017 ·doi:10.1017/CBO9780511629228 |
[13] | Happel, On Gorenstein Algebras, Progress in Mathematics (1991) |
[14] | Hartshorne, Residue and Duality, Lecture Notes in Mathematics (1966) ·Zbl 0212.26101 ·doi:10.1007/BFb0080482 |
[15] | Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z. 241 pp 553– (2002) ·Zbl 1016.55010 ·doi:10.1007/s00209-002-0431-9 |
[16] | Iyengar, Acyclicity versus totally acyclicity for complexes over noetherian rings, Documenta Math. 11 pp 207– (2006) ·Zbl 1119.13014 |
[17] | Jørgensen, The homotopy category of complexes of projective modules, Adv. Math. 193 pp 223– (2005) ·Zbl 1068.18012 ·doi:10.1016/j.aim.2004.05.003 |
[18] | Keller, Chain complexes and stable categories, Manuscripta Math. 67 pp 379– (1990) ·Zbl 0753.18005 ·doi:10.1007/BF02568439 |
[19] | Keller, Derived categories and universal problems, Comm. Algebra 19 pp 699– (1991) ·Zbl 0722.18002 ·doi:10.1080/00927879108824166 |
[20] | Keller, On the construction of triangle equivalences, in: Derived Equivalences for Group Rings, Lecture Notes in Mathematics (1998) |
[21] | Keller, Sous les cateégories dérivées, C. R. Acad. Sci. Paris 305 pp 225– (1987) |
[22] | Krause, The stable derived category of a noetherian scheme, Compositio Math. 141 pp 1128– (2005) ·Zbl 1090.18006 ·doi:10.1112/S0010437X05001375 |
[23] | Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. 25 pp 547– (1992) ·Zbl 0868.19001 |
[24] | Neeman, The homotopy category of flat modules, and Grothendieck duality, Invent. Math. 174 (2) pp 255– (2008) ·Zbl 1184.18008 ·doi:10.1007/s00222-008-0131-0 |
[25] | Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 246 (3) pp 227– (2004) ·Zbl 1101.81093 |
[26] | Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 pp 303– (1989) ·Zbl 0685.16016 ·doi:10.1016/0022-4049(89)90081-9 |
[27] | Verdier, Catégories dérivées, etat 0, Springer Lecture Notes 569 pp 262– (1977) |
[28] | C. C. Xi 2008 http://math.bnu.edu.cn/ccxi/Papers/Articles/rart.pdf |