76M12 | Finite volume methods applied to problems in fluid mechanics |
76M10 | Finite element methods applied to problems in fluid mechanics |
76S05 | Flows in porous media; filtration; seepage |
86A05 | Hydrology, hydrography, oceanography |
[1] | Terzaghi, Erdbaumechanik auf Bodenphysikalischer Grundlage (1925) |
[2] | Biot, General theory of three-dimensional consolidation, Journal of Applied Physics 12 pp 155– (1941) ·JFM 67.0837.01 ·doi:10.1063/1.1712886 |
[3] | Geertsma J Problems of rock mechanics in petroleum production engineering Proceedings of the 1st Congress of the International Society of Rock Mechanics 1996 585 594 |
[4] | Verruijt, Flow Through Porous Media pp 331– (1969) |
[5] | Rice, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Reviews of Geophysics 14 (2) pp 227– (1976) ·doi:10.1029/RG014i002p00227 |
[6] | McTigue, Thermoelastic response of fluid-saturated porous rock, Journal of Geophysical Research 91 (B9) pp 9533– (1986) ·doi:10.1029/JB091iB09p09533 |
[7] | Kurashige, A thermoelastic theory of fluid-filled porous materials, International Journal of Solids and Structures 25 (9) pp 1039– (1989) ·doi:10.1016/0020-7683(89)90020-6 |
[8] | Necati Özisik, Finite Difference Methods in Heat Transfer (1994) ·Zbl 0855.65097 |
[9] | Lewis, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1998) ·Zbl 0935.74004 |
[10] | Lewis, Fundamentals of the Finite Element Method for Heat and Fluid Flow (2004) ·doi:10.1002/0470014164 |
[11] | Dawson, Godunov-mixed methods for advective flow problems in one space dimension, SIAM Journal on Numerical Analysis 28 pp 1282– (1991) ·Zbl 0741.65068 ·doi:10.1137/0728068 |
[12] | Dawson, Godunov-mixed methods for advection-diffusion equations in multidimensions, SIAM Journal on Numerical Analysis 30 pp 1315– (1993) ·Zbl 0791.65062 ·doi:10.1137/0730068 |
[13] | Mazzia, A Time-splitting technique for advection-dispersion equation in groundwater, Journal of Computational Physics 157 (1) pp 181– (2000) ·Zbl 0960.76048 ·doi:10.1006/jcph.1999.6370 |
[14] | Godunov, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations, Matematicheskii Sbornik 47 pp 271– (1959) ·Zbl 0171.46204 |
[15] | Leer, Towards the ultimate conservative difference scheme: a second-order sequel to Godunov’s method, Journal of Computational Physics 32 pp 101– (1979) ·Zbl 1364.65223 ·doi:10.1016/0021-9991(79)90145-1 |
[16] | Mazzia, High order Godunov-mixed methods on tetrahedral meshes for density driven flow simulations in porous media, Journal of Computational Physics 208 (1) pp 154– (2005) ·Zbl 1115.76360 ·doi:10.1016/j.jcp.2005.01.029 |
[17] | Gambolati, Finite element analysis of land subsidence above depleted reservoirs with pore pressure gradient and total stress formulations, International Journal for Numerical and Analytical Methods in Geomechanics 25 pp 307– (2001) ·Zbl 1031.74036 ·doi:10.1002/nag.131 |
[18] | Coussy, Poromechanics (2004) |
[19] | Gambolati, Second-order theory of flow in three-dimensional deforming media, Water Resources Research 10 (6) pp 1217– (1974) ·doi:10.1029/WR010i006p01217 |
[20] | Marsily, Quantitative Hydrogeology: Groundwater Hydrology for Engineers (1986) |
[21] | Raviart, Lecture Notes in Mathematics 606, in: Mathematical Aspects of the Finite Elements Method (1977) ·doi:10.1007/BFb0064470 |
[22] | Brezzi, Mixed and Hybrid Finite Element Methods (1991) ·Zbl 0788.73002 ·doi:10.1007/978-1-4612-3172-1 |
[23] | Durlofsky, Triangle-based adaptive stencils for the solution of hyperbolic conservation laws, Journal of Computational Physics 98 pp 64– (1992) ·Zbl 0747.65072 ·doi:10.1016/0021-9991(92)90173-V |
[24] | Liu, A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws, SIAM Journal on Numerical Analysis 30 pp 701– (1993) ·Zbl 0791.65068 ·doi:10.1137/0730034 |
[25] | Barth TJ Jespersen DC The design and application of upwind schemes on unstructured meshes Proceedings of the 27th Aerospace Sciences Metting, 1989 |
[26] | Quarteroni, Numerical Mathemetics (2007) |
[27] | Ferronato, Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs, International Journal for Numerical and Analytical Methods in Geomechanics 32 pp 633– (2008) ·Zbl 1273.74532 ·doi:10.1002/nag.640 |
[28] | Putti, Linear Galerkin vs mixed finite element 2D flow fields, International Journal for Numerical Methods in Fluids 60 pp 1011– (2009) ·Zbl 1187.76692 ·doi:10.1002/fld.1929 |
[29] | Mattavelli, Geochemistry and habitat of the oils in Italy, American Association of Petroleum Geologists Bulletin 74 pp 1623– (1990) |
[30] | Chierici, Principi di Ingegneria dei Giacimenti Petroliferi (1989) |
[31] | Comerlati, Saving Venice by sea water, Journal of Geophysical Research 109 (F03006) (2004) |
[32] | Baù, Basin-scale compressibility of the Northern Adriatic by the Radioactive marker technique, Geotechnique 52 (8) pp 605– (2002) ·doi:10.1680/geot.2002.52.8.605 |
[33] | Baù, Land subsidence spreading factor of the Northern Adriatic gas fields, Italy, International Journal of Geomechanics 1 (4) pp 459– (2001) ·doi:10.1061/(ASCE)1532-3641(2001)1:4(459) |
[34] | Gambolati, The importance of poro-elastic coupling in dynamically active aquifers of the Po River basin, Italy, Water Resources Research 36 (9) pp 2443– (2000) ·doi:10.1029/2000WR900127 |
[35] | Fjaer, Petroleum Related Rock Mechanics (2008) |
[36] | Wagner, International Steam Tables - Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97 (2008) |
[37] | Juanes, The Footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale, Transport in Porous Media 82 (1) pp 19– (2010) ·doi:10.1007/s11242-009-9420-3 |
[38] | Chen, the CBMS-NSF Regional Conference Series in Applied Mathematics 77 (2007) |